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Blackbirds Know it… 
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Average percentage of peak frequency values in 100 Hz intervals for

• 16 Viennese city blackbirds (blue)

• 17 Viennese forest blackbirds (green).

Taken from Nemeth et al. [1].
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Typical Application Scenario 
Signal Processing and Digital VLSI Design 
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• How to maximize the intelligibility at the near-end?
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Typical Application Scenario 
Signal Processing and Digital VLSI Design 
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• Is this optimal in any sense?

• Which far-end information is needed for optimal processing?

• Typically independent processing with respect to noise at the

near-end and noise at the far-end.
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Typical Application Scenario 
Signal Processing and Digital VLSI Design 
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Key questions:

• How to maximize near-end intelligibility using a processor that
is jointly optimal with respect to the noise at far-end and near-
end?

• How to model speech intelligibility?
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Modelling Intelligibility 
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Classical Measures of Intelligibility 
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The Articulation Index (AI) and the Speech Intelligibility Index (SII):

• general structure: X

k2

IkAk(⇠k).

• Ik: maximum contribution of frequency band to intelligibility

(band importance function)

• Ak: fraction to which a frequency band contributes to the

intelligibility (band audibility).

AAI
k (⇠k) = min(max(10 log10 ⇠k, 0), 30)/30

ASII
k (⇠k) = max(min(10 log10 ⇠k, 15),�15)/30 + 1/2
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Classical Measures of Intelligibility 
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The Articulation Index (AI) and the Speech Intelligibility Index (SII):

• Functions Ik and Ak (including the di↵erent constants) are

determined empirically using listening experiments.

• Roots date back to 1920, before information theory...

• ...can be interpreted as a measure of the rate of information

(Allen [2]).
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Classical Measures of Intelligibility 
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Notice that the function Ak is not smooth and not concave, which

complicates optimization:

AAI
k (⇠k) = min(max(10 log10 ⇠k, 0), 30)/30

ASII
k (⇠k) = max(min(10 log10(⇠k), 15),�15)/30 + 1/2

A recent approximation of Ak was proposed by Taal et al. [3]:

AASII
k (⇠k) =

⇠k
⇠k + 1

.

The similarity of this approximation and AAI
k /ASII

k is well within the

precision of reasoning used to derive the AI and SII.
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A Simple Model for Communication 

Human 
processing 

Human 
processing 

disturbance 

Processing 
device 

speech 

disturbance 

What determines intelligibility?

• How well is the message from the talker’s brain received by the
listener’s brain?

• Speech intelligibility: Transfer of information over a noisy chan-
nel.

Motivates the use of an information theoretical approach.

10 
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A Simple Model for Communication 
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• Define talker message and listener message by MT and ML.

• Define talker and listener acoustic equivalents as AT and AL.

• Define Markov chain: MT ! AT ! AL ! ML

AT = MT + VT

AL = AT + VE

ML = AL + VL

• VT : production noise

• VL: interpretation noise

• VE : environmental noise
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A Simple Model for Communication 
production

noise VT

interpretation

noise VL

environmental

noise VE

talker
message MT

listener
message ML

AT AL

Consequence of production and interpretation noise:

The intelligibility will saturate when environmental noise decreases.

Or is the production noise multiplicative?

12 
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Production and Interpretation Noise 

Production noise:

• Speech production is a probabilistic process.

• A speech sound shows variability for a single speaker, certainly

across speakers.

• Variability is independent of the production level: The produc-

tion SNR

�2
MT

�2
VT

is scale independent.

• Consequence: correlation coe�cient ⇢MTAT is fixed.

13 
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Production and Interpretation Noise 
Interpretation noise:

• In a similar way we could argue that certain aspects of the

interpretation of the message is scale invariant.

• The interpretation SNR

�2
AL

�2
VL

is fixed.

• Consequence: correlation coe�cient ⇢ALML is fixed.
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Consequence of fixed production/interpretation SNR: Only little ben-

efit to have a frequency band with channel SNR ⇠k =
�2
AT,k

�2
VE,k

above

the production/interpretation SNR.

Usefulness of a channel saturates near production/interpretation SNR!
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Mutual Information Between Talker and 
Listener 
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• Consider know a time-frequency representation, with frame in-

dex i and frequency bin index k.

• We assume all processes jointly Gaussian, stationary (omit time

index i) and memoryless

• Independence across frequency channels:

I(MT ,ML) =
X

k

I(MTk ,MLk)

• Let ⇢0,k = ⇢MTAT ,k⇢ALML,k and ⇠k =
�2
AT,k

�2
VE,k
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Mutual Information Between Talker and 
Listener 

Mutual information between ML and MT :

I(MT ;ML) = �
X

k2

1

2

log

 
(1� ⇢20,k)⇠k + 1

⇠k + 1

!

=

X

k2

IkAk(⇠k)

with

Ak(⇠k) =
log

(1�⇢2
0,k)⇠k+1

⇠k+1

log(1� ⇢20,k)
and Ik = �1

2

log(1� ⇢20,k)

Remember the AI and the SII!

16 
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Comparing to Classical models 
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Although proposed Ak di↵ers

from the AI/SII Ak, it is well

within the precision of reasoning

used for AI/SII.

SII:

X

k2

IkA
SII
k , ASII

k =

max(min(10 log10 ⇠k, 15), 15)

30

+

1

2

ASII:

X

k2

IkA
ASII
k , AASII

k =

⇠k
⇠k + 1

prop.:

X

k2

IkAk(⇠k), Ak(⇠k) =
log

(1�⇢2
0,k)⇠k+1

⇠k+1

log(1� ⇢20,k)
and Ik = �1

2

log(1� ⇢20,k)
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The Speech Production Uncertainty 

Can we measure the production noise?

• Many talkers producing the same sentence.

• Dynamic time warping to align signals.

• Ensemble average is the message.

• Production noise can then be estimated by considering the vari-

ability of each TF unit over the ensemble.

Notice: In this presentation I model the production noise as being

additive, however, it is more likely to be multiplicative as we believe

the production noise has its origin in variations in the envelope.

18 
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The Speech Production Uncertainty 
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Estimate of band importance:

ˆI(k) = �R

2

log

�
1� ⇢2MTAT

(k)
�
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The Speech Production Uncertainty 
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For comparison, some band importance functions published in Stude-

baker (1986).
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Estimate of band importance:

ˆI(k) = �R

2

log

�
1� ⇢2MTAT

(k)
�
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Optimizing for Intelligibility 

21 
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Scenario 
Signal Processing and Digital VLSI Design 
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Assumptions 
Signal Processing and Digital VLSI Design 
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1. All processes are jointly Gaussian, stationary, and memoryless

(we omit the time-frame index i for notational convenience)

2. Signal model follows the Markov chain model: S ! T ! X !
X̃ ! Y ! Z.

3. Enhancement is performed by a linear time-invariant operator,

vk.

4. Individual component signals of the vectors sk and zk are in-

dependent so the total mutual information is

I(Si;Zi) =
X

k

I(Sk,i;Zk,i)



Circuits and Systems 
Department of Microelectronics 

Signal Model – Multi-Mic. 
Signal Processing and Digital VLSI Design 
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Multi-mic. Setup:

1. Produced signal : Tk = Sk|{z}
clean speech

+ Vk|{z}
production noise

2. Multi-mic. Rec. : Xk = dkTk + Uk|{z}
far-end noise

3. process. signal: X̃k = vH
k Xk

4. Received signal : Yk = X̃k|{z}
processed

+ Nk|{z}
near-end noise

5. Interpreted signal : Zk = Yk + Wk|{z}
interpratation noise

With acoustic transfer function dk = [dk,1, ..., dk,M ]T and far-end

noise Uk = [Uk,1, ..., Uk,M ]T .
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Mutual Information 
Signal Processing and Digital VLSI Design 
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• In Markov chain the overall correlation coe�cient (⇢) is the
product of all coe�cients:

⇢SkZk = ⇢SkTk ⇢TkX̃k
⇢X̃kYk

⇢YkZk

• The mutual information:

I(S;Z) =

X

k

�1

2

log(1�⇢2SkZk
) =

X

k

�1

2

log(1�⇢20,k⇢
2
TkX̃k

⇢2
X̃kYk

)

with fixed ⇢0,k = ⇢SkTk⇢YkZk .

• Hence, ⇢2SkTk
=

1

1+
�2
Vk

�2
Sk
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Mutual Information 
Signal Processing and Digital VLSI Design 
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• For linear processing with vk such that X̃k = vH
k Xk, we have

⇢2
TkX̃k

= 1

1+
vH
k

RUk
vk

|vH
k

dk|2�2
Tk

and ⇢2
X̃kYk

= 1

1+
�2
Nk

vH
k

RXk
vk

• Notice that for single-microphone processing with vk =
p
↵ we

thus have

⇢2
TkX̃k

= 1

1+
�2
Uk

�2
Tk

and ⇢2
X̃kYk

= 1

1+
�2
Nk

↵�2
Xk

• With single-microphone processing we can thus only change

the correlation coe�cient with respect to the near-end noise.
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Optimization for Intelligibility 1 
Signal Processing and Digital VLSI Design 
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Variable Change: vk =
p
↵kwk, ↵k 2 R+ = |vH

k dk|2

Hence, this implies: vk =
p
↵kw with wHd = 1.

P1 :

max � 1
2

P
k log

0

BBB@
1�

⇢20,k vH
k dkd

H
k vk�

2
Tk

vH
k

dkd
H
k

vk�
2
Tk

+vH
k

RUk|{z}
E{UkUk

H}

vk +�2
Nk

1

CCCA

{vk} 2 CM

s.t.
P

k v
H
k dkd

H
k vk�

2
Tk

=

P
k �

2
Tk



Circuits and Systems 
Department of Microelectronics 

Optimization for Intelligibility 2 
Signal Processing and Digital VLSI Design 
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P2 :

max I(↵k,wk)

wk 2 CM ,↵k 2 R+

s.t. C1 :

P
k ↵k �2

Tk
=

P
k �

2
Tk

C2 : wH
k dk = 1, 8k

I(↵k,wk) = �1

2

X

k

log

 
1�

⇢20,k↵k�2
Tk

↵k�2
Tk

+ ↵kwH
k RUkwk + �2

Nk

!

max

x,y

f(x, y) = max

x

max

y

f(x, y)

P3 :

max max I(↵

k

,w
k

)

↵

k

2 R+, C1 w
k

2 CM

, C2
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Optimization for Intelligibility 3 
Signal Processing and Digital VLSI Design 

P3 :

max max I(↵k,wk)

↵k 2 R+, C1 wk 2 CM ,wH
k dk = 1, 8k| {z }

w⇤
k=

R�1
Uk

dk

dH
k

R�1
Uk

dk

Using w⇤
k, the outer maximization is over ↵k

P4 :

max � 1
2

P
k log(1�

⇢2
0,k↵k�

2
Tk

↵k�2
Tk

+↵k�2
Mk

+�2
Nk

)

↵k 2 R+

s.t.
P

k ↵k �2
Tk

=

P
k �

2
Tk

�
2
Mk

= w⇤
k
HRUk

w⇤
k

29 
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KKT Conditions 
Signal Processing and Digital VLSI Design 1. @L({↵k},�,{µk})

@↵k
= 1

2

�2
Tk

+�2
Mk

↵k(�2
Tk

+�2
Mk

)+�2
Nk

� 1
2

(1�⇢20,k)(�2
Tk

+�2
Mk

)

↵k(1�⇢2
0,k

)(�2
Tk

+�2
Mk

)+�2
Nk

+

��2
Tk

� µk = 0

2. µk↵k = 0, 8k (complementary slackness)

3. ↵k�
2
Tk

� 0, µk � 0, 8k (primal and dual feasibility)

4.

P
k ↵k�

2
Tk

�
P

k �
2
Tk

= 0 (equality constraint)

ak↵
2
k + bk↵k + ck = 0 , ↵k =

�bk ±
p

b2k � 4akck
2ak

ak = �(�2
Tk

+ �2
Mk

)((1� ⇢20,k)�
2
Tk

+ �2
Mk

)�

bk = �((2� ⇢20,k)�
2
Tk

+ 2�2
Mk

)�2
N,k�

ck =
1
2
⇢20,k�

2
Nk

� �4
Nk

�
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Optimal Filter 

MVDR MI optimal

filter [4]

The optimal strategy can thus be decomposed into

• MVDR

• Single channel MI optimal filter from [4], taking the remaining

noise from the far-end into account.

31 

�2
Tk

and �2
Mk
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Reference Methods 

32 
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Optimal Filter 

MVDR MI optimal

filter [4]

33 

+ gain

What if far-end processor has applied additional linear processing?

• Far-end Processing: MVDR + linear gain
p
�

• If near-end processor is informed, (linear) MI optimal gain:
p
↵p
�
.

Hence, the additional processing is completely compensated.

��2
Tk

and ��2
Mk
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Non-Optimal Reference Methods 

MI optimal

filter [4]
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MWF

�2
Tk

and �2
Mk

= 0
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Non-Optimal Reference Methods 

MI optimal

filter [4]
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�2
Tk

and �2
Mk

= 0

MVDR
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Simulation Setup 
Signal Processing and Digital VLSI Design 

36 

• Dual microphone (m = 2) with 2 cm spacing, in a 3⇥ 4⇥ 3 m
room with one target source.

• Far-end noise: Three correlated noise sources and simulated
uncorrelated microphone noise at 60 dB.

• 36 seconds of speech sampled at 16 kHz.

• Simulated Room transfer function [Habets]

• Far-end and near-end noise sources with an overlapping region
from 1.5 kHz till 3 kHz.

• Short-time DFT with square-root-Hann window and block size
of a 32 ms and 50 % overlap (K = 256).
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Simulation Results  
Signal Processing and Digital VLSI Design 
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Simulation Results - Instrumental  
Signal Processing and Digital VLSI Design 
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Simulation Results - Intelligibility Test 
Signal Processing and Digital VLSI Design 

39 

• Dutch matrix test (closed) with seven participants

• Far-end noise: -10 dB and -2.5 dB

• Near-end noise: -7.5 dB, 0 dB and 5 dB

• Reference algorithms:

– MVDR

– Disjoint (MVDR + MI)

– Disjoint (MWF + MI)

– Prop. Jointly optimal (MVDR + MI)

• The values for ⇢20 in these experiments are based on the band

importance functions from the SII.
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Signal Processing and Digital VLSI Design 
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Simulation Results - Intelligibility Test 
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Summary 
Signal Processing and Digital VLSI Design 
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• Model of speech communication was presented based on speech

production uncertainty.

• Although derived from a di↵erent viewpoint, the presented

model shows strong similarities with classical intelligibility mod-

els.

• Conventional independent processing of near-end noise and far-

end noise is not optimal.

• The optimal processor of speech can be separated into a far-end

and near-end processor.

• Near-end processing must be aware of the processing performed

at the far-end.
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