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* | have worked extensively on speech recognition,
speech enhancement and audio processing
— And, of course, on neural networks
e | teach the subject at CMU

* |nvestigations on the basic principles of NNets
 And how they may be applied to signal processing..
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Neural Networks have Taken Over

 Neural networks are increasingly providing the
state of the art in many pattern classification,
regression, planning, and prediction tasks
— Speech recognition
— Image classification
— Machine translation
— Robot planning

— Games
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Neural Networks have Taken Over
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Connectionism

e Alexander Bain: 1873

— The magic is in the connections!
— An early computational neural network model
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The Computational Model of the
Neuron

Dendrite Axon
terminal

o Left: Biological Neuron
e Right: The computational model
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Perceptron as a Boolean gate

XVY

 The basic Perceptron

— Simple Boolean unit
e The gates can combine any number of inputs
* Including negated inputs (just flip the sign of the weight)

apnot represent an XOR
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MLP as a Boolean function

Hidden Layer
e Multi layer perceptron

— The first layer is a “hidden” layer
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Constructing a Boolean Function

((A&X&Z)|(A&T))&((X & V)|(X&Z))
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e A more complex Boolean function
e Has two hidden layers

e Any Boolean function can be composed using a multi-layer
perceptron
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Constructing Boolean functions with
only one hidden layer
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e Any Boolean formula can be expressed by an MLP with one hidden
layer
— Any Boolean formula can be expressed in Conjunctive Normal Form
e The one hidden layer can be exponentially wide

— But the same formula can be obtained with a much smaller network if
we have multiple hidden layers
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Booleans over the reals

 The network must fire if the input is in the
coloured area
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Booleans over the reals

 The network must fire if the input is in the
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Booleans over the reals
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Booleans over the reals
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Booleans over the reals
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 The network must fire if the input is in the
coloured area
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Booleans over the reals

* The network must fire if the input is in the
coloured area
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Booleans over the reals

 The network must fire if the input is in the
coloured area
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Booleans over the reals

X4

 The network must fire if the input is in the
coloured area

Carnegie Mellon
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Booleans over the reals

e “OR” two polygons
e Athird layer is required

Carnegie Mellon 20




How Complex Can it Get

()

e An arbitrarily complex figure

e Basically any Boolean function over the basic linear
boundaries

Carnegie Mellon
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* The polygon net

* |Increasing the number of sides shrinks the area
outside the polygon that have sum close to N

Carnegie Mellon 22




Composing a circle

No nonlinearity

e The circle net
— Very large number of neurons

— Circle can be of arbitrary diameter, at any location
Mieved without using a thresholding function!!



Adding circles @@

No nonlinearity |
applied! N )

\
g
oo

 The “sum” of two circles sub nets is exactly a net
with output 1 if the input falls within either circle
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Composing an arbitrary figure

e Just fit in an arbitrary number of circles

— More accurate approximation with greater number of
smaller circles

Adasson here that we will refer to again shortly..
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Story so far..

 Multi-layer perceptrons are Boolean networks

— They represent Boolean functions over linear
boundaries

— They can approximate any boundary

e Using a sufficiently large number of linear units

— Complex Boolean functions are better modeled
with more layers

— Complex boundaries are more compactly
represented using more layers

Carnegie Mellon 26



Lets look at the weights
y = {Uf Zwixi =>T

0 else

B {1ifxTw2T
y_
0 else

e What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold

Carnegie Mellon
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The weight as a “template”

X'w>T

0> d
cos O >—
1X|

T
0 < cos~1 (—)
| X]|

 The perceptron fires if the input is within a specified angle of the weight
— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

* The overall decision region can be arbitrarily nonconvex
 Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough
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The weight as a template

W X X

Correlation = 0.57 Correlation = 0.82\'
y = l. .

0 else

e |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

 The perceptron is a correlation filter!
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The MLP as a Boolean function over
feature detectors

DIGIT OR NOT? (.

e The input layer comprises “feature detectors”
— Detect if certain patterns have occurred in the input

e The network is a Boolean function over the feature detectors
mportant for the first layer to capture relevant patterns
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The MLP as a cascade of feature
detectors

DIGIT OR NOT?

e The network is a cascade of feature detectors

— Higher level neurons compose complex templates from features represented
by lower-level neurons

* Risk in this perspective: Upper level neurons may be performing “OR”
g for a choice of compound patterns

Carnegie Mellon
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Story so far

e MLPs are Boolean machines
— They represent Boolean functions over linear boundaries
— They can represent arbitrary boundaries

* Perceptrons are correlation filters
— They detect patterns in the input

e MLPs are Boolean formulae over patterns detected by perceptrons
— Higher-level perceptrons may also be viewed as feature detectors

e Extra: MLP in classification

— The network will fire if the combination of the detected basic features
matches an “acceptable” pattern for a desired class of signal
e E.g. Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin) = Face
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MLP as a continuous-valued regression
A { ‘&
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* MLPs can actually compose arbitrary functions to arbitrary precision

e 1D example

— Left: Asimple net with one pair of units can create a single square pulse of any
width at any location

— Right: A network of N such pairs approximates the function with N scaled pulses
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MLP as a continuous-valued regression
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e MLPs can actually compose arbitrary functions
— Even with only one layer
— To arbitrary precision
— The MLP is a universal approximator!
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Story so far

e MLPs are Boolean machines

— They represent arbitrary Boolean functions over arbitrary linear
boundaries

— MLPs perform classification

* Perceptrons are pattern detectors
— MLPs are Boolean formulae over patterns detected by perceptrons

e MLPs can compute arbitrary real-valued functions of arbitrary
real-valued inputs

— To arbitrary precision
— They are universal approximators

Carnegie Mellon
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A note on activations

._Snﬁplur\

|~ Rectilier

 Explanations have been in terms of a thresholding “step”
applied to the weighted sum of inputs

* Inreality, we use a number of other functions
— Mostly, but not always, “squashing” functions
— Differentiable, unlike the step function

PTIOE S IOt substantially change any of our interpretations

0 I 2
X

function
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Learning the network

/

 The neural network can approximate any function
e But only if the function is known a priori

Carnegie Mellon 37



Learning the network

-
AJ’-/]\.\

* |n reality, we will only get a few snapshots of the function
to learn it from

 We must learn the entire function from these “training”

Caxaxziclfsna (K



General approach to training

Black lines: error when
_\ function is above desired
output

Blue lines: error when
function is below desired
output

F=) 0= f(x, W))?

 Define an error between the actual network output for
any parameter value and the desired output

— Error typically defined as the sum of the squared error over
individual training instances



General approach to training

 Problem: Network may just learn the values at the inputs
— Learn the red curve instead of the dotted blue one
e Given only the red vertical bars as inputs

| “smoothness” constraints

Carnegie Mellon




Data under-specification in learning

/
\w
«/

e Consider a binary 100-dimensional input

e There are 2199=1030 possible inputs

e Complete specification of the function will require specification of 103° output
values

e Atraining set with only 10%>training instances will be off by a factor of 10%°

Carnegie Mellon
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Data under-specification in learning

1
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e Consider a binary 100-dimensional input

e There are 2199=1030 possible inputs

e Complete specification of the function will require specification of 103° output
values

e Atraining set with only 10%>training instances will be off by a factor of 10%°
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Data under-specification in learning

e MLPs naturally impose constraints W

& Y

e MLPs are universal approximators

— Arbitrarily increasing size can give ped

you arbitrarily wiggly functions
— The function will remain ill-defined /

on the majority of the space T~

e For a given number of parameters deeper networks
impose more smoothness than shallow ones

— Each layer works on the already smooth surface output by
the previous layer

Carnegie Mellon 43




Even when we get it all right

e Typical results (varies with initialization)

e 1000 training points Many orders of magnitude more than
you usually get

raining tricks known to mankind

Carnegie Mielion
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But depth and training data help

-

4 layers

3 layers 4 layers

6 layers 11 layers 6 layers 11 layers

Deeper networks seem to learn better, for the same 10000 trainin
number of total neurons

— Implicit smoothness constraints

* As opposed to explicit constraints from more conventional
classification models

instances

Similar functions not learnable using more usual

pattern-recognition models!! "



Story so far

MLPs are Boolean machines

— They represent arbitrary Boolean functions over arbitrary linear
boundaries

Perceptrons are pattern detectors

— MLPs are Boolean formulae over these patterns

MLPs are universal approximators

— Can model any function to arbitrary precision

MLPs are very hard to train
— Training data are generally many orders of magnitude too few
— Even with optimal architectures, we could get rubbish
— Depth helps greatly!
— Can learn functions that regular classifiers cannot
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MLP features

DIGIT OR NOT?

= = \ ——— =
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e The lowest layers of a network detect significant features in the
signal
 The signal could be reconstructed using these features

oo Vvl retain all the significant components of the signal 47




Making it explicit: an autoencoder

x |24

Hahb

1

all

x |23

0

* A neural network can be trained to predict the input itself

e This is an autoencoder

* An encoder learns to detect all the most significant patterns in the signals

e reragcr recomposes the signal from the patterns




Deep Autoencoder




What does the AE learn

WTY | E = ||X— W WX]|? Find W to minimize Avg[E]
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e With non-linearity
— “Non linear” PCA

— Deeper networks can capture more complicated
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The Decoder:

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical signals from the source!
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The Decoder:

Sax dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical signals from the source!
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The Decoder:

Clarinet dictionary

CODER

0

 The decoder represents a source-specific generative
dictionary
e Exciting it will produce typical signals from the source!

54
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Story so far

e MLPs are universal classifiers

— They can model any decision boundary

 Neural networks are universal approximators

— They can model any regression

 The decoder of MLP autoencoders represent
a non-linear constructive dictionary!
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NNets for speech enhancement

* NNets as a blackbox

* NNets for classification
 NNets for regression

* NNets as dictionaries

e Largely in the context of automatic speech
recognition!

Carnegie Mellon

56



NN as a black box

* In speech recognition tasks, simply providing
the noise as additional input to the recognizer
seems to provide large gains!
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Old-fashioned Automatic Speech
Recognition

P

VANWANWAN

e Traditional ASR system (antebellum, circa 2010)
— Phonemes modelled by HMMs
— Phoneme state output distributions modelled by Gaussian
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Deep Neural Networks for Automatic
Speech Recognition

i ‘ ‘ P(state|X)

i

Spectral Vectors of Speech (X)

e Postbellum ASR

— Gaussian mixtures replaced by a deep neural network

Carnegie Mellon 59



NN-BB: Noise-Aware speech recognition

Noise Speech
Spectra (N) Spectra (X)

 Simply add an estimate of the noise as an additional input

— The system is “noise aware”

 The noise estimate too may have been derived by another

Carnzgie M2!loa k.. 60




NN-BB: Noise-Aware speech recognition

System/

A B C D AVG
Features

D —

GMM-HMM N
2 o] 77
(MECC) 125 | 183 | 20.5 | 31.9 Q_,[}/)

DNN-HMM

ol
(MECC) 5.7 104 | 109 | 22.6

| System | A B | C]|] D || AVG |
DNN Baseline 5.6 | 88 | 89 | 20.0
DNN + FE 48 | 9.1 | 8.6 | 20.8
DNN + NAT 54| 88 | 7.8 | 19.6
DNN + Dropout 5.1 | 84 | 86 | 19.3
DNN + NAT + Dropout || 54 | 83 | 7.6 | 18.5

15.3
DNN-HMM {1 1705 | 00 | 206 QS)

(FBANK-24)

From Seltzer, Yu, Wong, ICASSP 2013

 DNN provides large improvements by itself

— Results on Aurora 4 task, with four subtasks

e Adding “noise-awareness” improves matters

— Seltzer, Yu, Wong, 2013, many others later

e Acutal noise spectrum not essential

— Simply having a guess of noise type is beneficial (Kim, Lane, Raj, 2016)

Carnegie Mellon
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NN-BB: *-aware speech recognition

P(state|X)

Speaker Noise Speech
ID Spectra  Spectra

e Adding extra input about any additional signal characteristic
improves matters

— Speaker
— Environment
— Channel..

Carnegie Mellon 62




Neural Networks as Classifiers

X4
* Neural networks learn Boolean classification functions

e For a fixed network size, deeper networks learn better
functions

preas superior to conventional classification functions




Recasting Signal Enhancement as
Classification

* Noise attenuation can be viewed as the
detection of spectrographic masks

— A classification problem

* The classification can be performed by a
neural network

Carnegie Mellon
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Spectrogram of a Clean Speech Signal

* A clean speech signal
— Richard Stern saying “Welcome to DSP1”

Carnegie Mellon




Spectrogram of Speech Corrupted to
5 dB by White Noise

 High-energy regions of spectrogram remain

e Low-energy regions now dominated by noise!
— Most of the effects of noise expressed in these regions

Carnegie Mellon




Erasing Noisy Regions of the Picture

4000

3500 e

2000 '

1500 [ 8 gy
o

e Solution: “Mask” (erase) all noise corrupted regions in
the spectrogram (floor them to 0)

e Reconstruct the signal from the partial spectrogram

Carnegie Mellon




Erasing Noisy Regions of the Picture

4000

3500 -

2000 |

1500

0k

e Solution: Mask all noise corrupted regions from the
spectrogram (floor them to 0)

Reconstruct the signal from the partial spectrogram

Carnegie Mellon




Challenge

* From inspection of time-frequency components
of spectrogram, how to determine which to erase

— A hard classification problem

 Many ineffective solutions proposed over the years

— |deally suited to learn with a neural network!




Estimating Masks

M [T

M — |

W—}" ',——} T-F Unit-Level — Subband _}# | Resynthesis _}W
I

Rl | | Feature Extraction Classifiers
Noisy Speech f | Separated
|
! | Speech
Cochlear Estimated IBM
Filtering
From: “supervised speech separation”,
PhD dissertation Y Wang, Ohio State Univ —
~

e Top: General flow of ™ T
SOIUtiOﬂ | HiddE-n-La'ferE |

i > s
e Bottom: Classifier T Linear SVM

| Hidden Layer 1 |

Estimated

— The network itself 1B

produces a mask I
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Estimating Masks

Clean speech Speech + babble

90 120 150 180
Frame Frame

(a) (b)

Ideal mask Estimated mask

5
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Frame Frame

(e) (d)
 Example solution by Yuxuan Wang
— Network with only 2 hidden layers of 50 sigmoid units each
— PhD dissertation with Deliang Wang at OSU
— Results reported in terms of HIT-FA rates (70% achieved)



Sound demos

Speech mixed with unseen, daily noises

Cocktail party noise (5 dB)
Mixture Separated

Destroyer noise (0 dB)

Mixture Separated

Slide from Deliang Wang
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Story so far

e Capabilities and Limitations of NNets
* NNets can be classifiers of unlimited versatility

* NNets can be regression functions of unlimited
versatility

* NNets can be very good constructive dictionaries

* NNet classifiers can be used to enhance speech
signals

Carnegie Mellon
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NNets as regression

 Neural networks can also compute
continuous-values outputs

— May also be viewed as regression models

* NNet as regression:
— Estimate clean speech from noisy speech directly

— Replace filtering modules in conventional signal
processing systems with learned nnet-based
versions

Carnegie Mellon




NNets for denoising

Channel

0 30 &0 90 120 18
F,_rame Frame

* Xu, Du, Dai, Lee, IEEE Sig. Proc. Letters, Jan 2014.
e Simple model:

— Given clean-noisy stereo pairs of signals
e Represented spectrographically

— Learn to predict a single clean frame from a window of noisy frames
Given noisy speech, use the network to predict clean speech

Carnegie Mellon




NNets for denoising

e Xu, Du, Dai, Lee, IEEE Sig. Proc. Letters, Jan 2014.
— 3 hidden layers of 2048 neurons

 Example of signal corrupted to -12dB by babble
noise

Carnegie Mellon



A more detailed solution for mixtures

Source 1 Source 2

Yis Y?r
Output__,.| Q Q O

— =

z f e, -o-"'}""“--
e
-

— |§r1[
m; = — _
2 T L+ 2

._\_\__

=
o
.,-'P"= —
-

- O
Huang, Kim, Hasegawa- . = T —1
Johnson, Smaragdis, Y Q\ & Q /}9 Yo
TASLP, Dec 2015 —

=
_Oi

Hidden Layers e

h,.,

%
C =g Recurrent network
O
O

Input Layer O

X; o |
 Works on mixtures of pairs of sounds
e Model:

— Input : sound mixture (window of spectrographic frames)
s b ut - Both sources (single spectrographic frame)




Network size
Training data?

Huang et. al. results

. . . Y . nput Layer
Singing voice in music __ 5
3500 3500¢ 35004 3500 3500
_ 3000 _3]:0 ~ 3D00y 3000 3000
£ 2000 £ 2oy £ 2=m) £ =m0 £ 2000
7 T 7 & 7
i:ﬂ ED:O EF.IID EICCI i::l'.t
3 s, = s - 3
£ 10 £ 10 £ 1= £ 100 - = e £ 10 L=
EMHets, e oy ¥ a000) 100y 1000ps o b X =T q RU o1 S gy <y ™ S s
e e B LT s g T TN e s e e T N e vk e e s
SR =R i s S S L sl i e st Em=—ts ==
=] 1 2 3 4 -1 a 1 2 3 £ - [ 1 2 3 4 - o 1 3 4 2 =] 1 2 3 4
Time (s} Tre (5) Time | Time i} Time (s
(a) Mixture (b) Original singing (c) Recovered singing (d) Original music (e) Recovered music
3500 3500 3500
3000 3000 3000
ool - e o £ z=m|
. “ ¥ 7 n
=-IC - Ezm- E:mc- -
Emoc o . : & %500 & 1500 - X .
1o _‘ : &5 2 " omoch - - E " om - _ -
feScme et o] 37 DD =5 o JiE D= BE
:I- !:\E. 1 - 15 . 2 25 3 1] as 1 15 2 25 3 =] 0s 1 15 2 rd- 3

Time (s

(a) Mixture

Time (5)

(b) Original speech

'I'I‘!ILJ-

(c) Recovered speech

(d) Onginal noise

Speech in babble noise
 Huang, Kim, Hasegawa-Johnson, Smaragdis, TASLP, Dec 2015
— Recurrent nets, 2 (speech) or 3 (singing) hidden layers of 1000

(e) Recovered noise

neurons

provement in speech to interference
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NNets in Conventional Signal
Processing

 Conventional signal processing techniques
have been developed over several decades

— Theoretical capabilities mathematically
demonstrated

— Practical capabilities empirically demonstrated

e Can NNet regressions be incorporated into
these schemes?

Carnegie Mellon
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An old faithful: Spectral Subtraction

Y, Estimate
Noisy signal Denoised signal
X, I Wiener Filter Y,
Nt

Noise Estimate I—

e Estimate noise recursively

— Update noise when noise dominates the signal
e Estimate “clean speech” recursively

— Update when speech dominates

e Compose a filter from speech and noise estimates

b signal .

Carnegie Mellon



An old faithful: Spectral Subtraction

Yt ESt|mate /Y\vt — ﬁt?t—l + (1 - ﬁt)Xt
Y
We= Y +tN
X, IWiener Filter ‘ : Yt = WtXt
Nt

Noise Estimate I—

Ni;=aNi g+ (1 —ap)X;

e Estimate noise recursively

— Update noise when noise dominates the signal
e Estimate “clean speech” recursively

— Update when speech dominates

e Compose a filter from speech and noise estimates
b signal!
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An old faithful:

Spectral Subtraction

Y, Estimate

g3(t) = G3(Y;_1,N(, Xy)

Xt I Wiene

N,

r Filter Yt — gB(t)Xt

Noise Estimate

N;=g9g1(t)N;_1 + g2(t)X;

* |nstead of linear regression, model estimators

as learned function

sgd1,92 and g3

— Model the functions as NNets

Carnegie Mellon
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Neural Network Wiener Filter

X(t) »@ > Y(1)

Tgs(t)

4@92“) | l[ AR

[ G, 0:(t-1) Y(t-1) T X(t)

T
go(t-1) Y(t-1) N(t-1) X(t) N(t)

N(t-1) a@
g,(t)

G0 |

f_f_ ¥
g,(t-1) Y(t-1) N(t-1) X(t)

Osako, Singh, Raj, WASPAA 15

Carnegie Mellon
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Neural Network Wiener Filter

(a) Observed Noisy Signal

8000 pEEE———
6000 = =
c
()] >
2 4000
o
“- 2000
o | - Timle'?c] 20
(b) Spectral Subtraction
3
)
c
(]
>
g
2
Networks: 9
]
4 Iafyers of 128 2
Units &

SDR improvement (over Spectral Subtraction): 8 —10dB

Carnegie Mellon
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Story so far

e Capabilities and Limitations of NNets
* NNets can be classifiers of unlimited versatility

* NNets can be regression functions of unlimited
versatility

* NNets can be very good constructive dictionaries

 NNet classifiers can be used to enhance speech
signals

* NNet regressions can be used to enhance speech

— And even incorporated effectively into legacy signal
orocessing schemes

Carnegie Mellon 85




Neural Networks as Dictionaries

BRI
\\\i\‘. —— e CODER

 Neural networks give us excellent “dictionaries”

— Constructive networks which, when “excited”,
produce signals that are distinctly from the target
source

 Use these in dictionary-based enhancement?
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Dictionary-based techniques

Compose

e Basicidea: Learn a dictionary of “building blocks” for
each sound source

e All signals by the source are composed from entries

87



Dictionary-based techniques

Compose

(Y
’J J J \J ‘ ‘ o
3 = S
¥ r I e
T Ul =
Crash Closed  Open  Ride Left  Right Snare Floer Bass  Hi-H

e Learn a similar dictionary for all sources
expected in the signal
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Guitar Drum
music music

Compose Compose

N
v
}
() f |
FL
®,
r4
N L] ] N
e
{ = S
—
= r | SR
I
Crash Closed Open  Ride L t Smare  Floor Bass  HiH ‘,{H,
Cymbal Hi-Hat Hi-Hat Cymbal ck  Drum  Tom  Drum  Ped
m

eft i

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary
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e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal
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Guitar Drum
music music

Compose Compose

T
i
Crash  Closed  Op Ride t  Rigl
Cymbal Hi-Hat Hi-HE cymbal ck Ra Drum
om Tom

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

e The composition from the identified dictionary entries gives you
the separated signals
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Learning Dictionaries

D,(0,t) - Dy(F,t) D,(0,t) -+  D,(F,t)
N4 1T/
foE1 Q) foE2()
fen10 / \ / \JSen20
ST ST TN

Dy(0,t) Dl(F £) D,(0,t) Dy(F,t)
e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

 For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source
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Model for mixed signal

testset Cost function
X(f, 1)

Vo vawo v wey = 2HEO-YEOR

fDE1O\7_/ \;/fDEZ 0
/]\... N f /]\ vee ’\

L,(0,¢t) - I1(H,¢) I,(0,t) - I(H, 1)

Estimate I;() and I, () to minimize cost function /()

e The sum of the outputs of both neural
dictionaries

Msome unknown input
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Separation

Test Process testset EEELE s o Cost function

Vo Yo YR 1= D - (o

fDE1O\7_/ \;/fDEZ 0
/]\... N f /]\ vee ’\

1,(0,t) - I;(H,¢) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I;() and I, () to minimize cost function /()

e Given mixed signal and source dictionaries, find excitation that best
recreates mixed signal

— Simple backpropagation
* |Intermediate results are separated signals
agdis 2016, Osako, Mitsufuji, Raj, 2016.
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Example Results

Input signal Original clean signal Denoised signal
14 | ¥ I 5 | ¥ T ]

DB o £ 6 =58, £ | BRaA R s

Dictio‘r-lz;‘fy with smglehldden layer of 100 neurons

Input signal Original clean signal Denoised signal

3 | B 1 1 B I !

R SR Ta— _~¢;_._'f'_'_’l =58 - £ i == B ==

5-layer dictionary

e Speech in automotive noise
— Dictionaries for speech and automotive noise

Carnegie Mellon

95

|

A .



Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

e Separating music
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DNN dictionary methods

* Training dictionaries separately for each source:
— Scaleable
— Can easily add new sound/target source to mix
— Can go beyond mixtures of two sounds

e Problem:
— Does not tune dictionary for separation

e Only for generation
e Extension : Discriminative training of dictionaries
— Specialized for separation
— Use “stereo” training data (combination of noisy and clean data)
— Performance is superior to generative methods
— Not scaleable, non-trivial to incorporate new sources
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Summary

e We learned
— Capabilities and Limitations of NNets
— That NNets can be classifiers of unlimited versatility

— That NNets can be regression functions of unlimited
versatility

— That NNets can be very good constructive dictionaries
 NNet classifiers can be used to enhance speech signals

* NNet regressions can be used to enhance speech

— And even incorporated effectively into legacy signal
processing schemes

 NNet dictionaries can be used to enhance speech

Carnegie Mellon
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In Conclusion

 Have left out much more than | touched upon
A lot more than what I've outlined

* Recurrence

e The magic of “attention”

e Beamforming — multi-channel processing

e Joint optimization of signal enhancement and speech
recognition

 Unsupervised segregation of mixed signals into sources

 The work continues at a rapid pace..
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