Spektrale Korrespondenzen für negativ gekrümmte Riemannsche lokal-symmetrische R?ume
?berblick
Das zentrale Ziel des Vorhabens ist die Beschreibung der Pollicott-Ruelle-Resonanzen lokal-symmetrischer R?ume negativer Krümmung mithilfe einer zu etablierenden Korrespondenz zwischen diesen Resonanzen und Quantenresonanzen. Es gibt enge Zusammenh?nge zwischen den dynamischen Eigenschaften eines freien Teilchens auf negativ gekrümmten kompakten lokalsymmetrischen R?umen in den Beschreibungen der klassischen und der Quantenmechanik. 360直播吧 lassen sich in einer Korrespondenzabbildung fassen, die zwischen sogenannten resonanten Zust?nden des klassischen und des Quantensystems zu gegebenen Spektralparametern vermittelt. Für Fl?chen ist diese Korrespondenzabbildung sehr gut verstanden, in h?herer Dimension gibt es mehrere Hindernisse für die ?bertragung der Resultate für Fl?chen. Eines dieser Hindernisse ist, dass die Poisson-Transformation, die vom Spektralparameter abh?ngt und in allen Beschreibungen der zu untersuchenden Zusammenh?nge eine wichtige Rolle spielt, nur für generische Parameter umkehrbar ist. Im zweidimensionalen Fall konnte man die Korrespondenzen auch für die Ausnahmeparameter etablieren, weil man in diesem Fall für beide Seiten der Korrespondenz so explizite Beschreibungen hatte, dass man die Umkehrbarkeit der Korrespondenzabbildung auch ohne die Poisson-Transformation nachweisen konnte. In diesem Projekt sollen die Eigenschaften der Korrespondenzabbildungen für die exzeptionellen Spektralparameter im Falle allgemeiner negativ gekrümmter lokalsymmetrischer R?ume studiert werden. Insbesondere sucht man nach topologischen Informationen, die in den Ausnahmeparametern kodiert sind, und welche Rolle sie in der Beschreibung des Divisors der Selberg-Zetafunktion spielen. Man kann darauf hoffen, so Hinweise auf die topologische Information spektraler Daten auch für allgemeine negativ gekrümmte Riemannsche Mannigfaltigkeiten ohne zus?tzliche Symmetrieeigenschaften zu erhalten.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Frankreich, Luxemburg
Mitverantwortliche Professor Dr. Jan Frahm; Professor Dr. Tobias Weich
Kooperationspartnerinnen / Kooperationspartner Professor Dr. Colin Guillarmou; Professor Dr. Martin Olbrich; Professorin Dr. Angela Pasquale
Key Facts
- Grant Number:
- 432944415
- Art des Projektes:
- Forschung
- Laufzeit:
- 01/2019 - 12/2023
- Gef?rdert durch:
- DFG
- Website:
-
DFG-Datenbank gepris