- E-Mail:
- oliver.mueller@uni-paderborn.de
- Phone:
- +49 5251 60-5100
- Office Address:
-
360直播吧 Str. 100
33098 Paderborn - Room:
- Q2.457
Research
Latest Projects
- DynOpt-San
- HeatTransPlan
- DC2HEAT - Data Centre HEat Recovery with AI-Technologies
- AProSys - AI-supported assistance and forecasting systems for sustainable use in intelligent distribution network technology
- Datenraum Kultur
- KIAM: Competence center AI in the working world of industrial SMEs in OstWestfalenLippe
Publications
Latest Publications
Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study
M. Stumpe, P. Dieter, G. Schryen, O. Müller, D. Beverungen, Transportation Research Part A: Policy and Practice (2024).
Not your Average Digital Nudge: Heterogeneous Effects of Personalized Nudges with CausalML
K. B?sch, O. Müller, M. Weinmann, in: Proceedings of the Symposium on Statistical Challenges in Electronic Commerce Research, 2024.
Towards Cognitive Assistance and Prognosis Systems in Power Distribution Grids – Open Issues, Suitable Technologies, and Implementation Concepts
R. Gitzel, M. Hoffmann, P. zur Heiden, A.M. Skolik, S.B. Kaltenpoth, O. Müller, C. Kanak, K. Kandiah, M.-F. Stroh, W. Boos, M. Zajadatz, M. Suriyah, T. Leibfried, D.S. Singhal, M. Bürger, D. Hunting, A. Rehmer, A. Boyaci, IEEE Access (2024) 1–1.
Getting in Contract with Large Language Models - An Agency Theory Perspective On Large Language Model Alignment
S.B. Kaltenpoth, O. Müller, in: Wirtschaftsinformatik 2024 Proceedings, 2024.
Digital Responsibility – a Multilevel Framework for Responsible Digitalization
D. Beverungen, D. Kundisch, M. Mirbabaie, O. Müller, G. Schryen, S.T.-N. Trang, M. Trier, Business & Information Systems Engineering 65 (2023) 463–474.
Show all publications
Teaching
Current Courses
- ?bung zu Grundlagen von Managementinformationssystemen
- Vorlesung zu Grundlagen von Managementinformationssystemen
- Studienarbeit Predictive Analytics
- Methoden der Data Science - ?bung
- Methoden der Data Science
- Data Science for Business
- Applied Machine Learning for Text Analysis