Key research area "Intelligent Technical Systems"
Intelligent technical systems are highly complex products, characterized by a close interaction between hard- and software. . These components or subsystems are interconnected and can operate on different spatial and temporal scales. Examples of intelligent technical systems are smart grids, the digital factory, smart cities, explainable AI, autonomous vehicles, etc.
An integration of these systems into an application context means high requirements in terms of security, robustness, learning ability, resource efficiency, data protection, and others. Due to the complexity and heterogeneity of the systems, these requirements are not easy to fulfill. Moreover, an interdisciplinary research approach is necessary, because the optimal functionality of the overall system only results from the complex interaction of the components, the interaction with the users and the specifics of the application.
The research work in the profile area of intelligent technical systems is carried out in close cooperation of computer science, engineering, mathematics, economics, but also with cultural and social studies when it comes to the application of the systems in social contexts. They deal with analysis and design (modeling, simulation, verification, method development) of intelligent technical systems and include socio-economic and social aspects (business models, behavioral economics, technology ethics, interaction design).
Large collaborative projects
Duration: 2018 - 2024
Total project volume: 12 million euros
Project volume of the University: 1.522.000 euros
Funded by: German Research Foundation (DFG)
The goal of this priority program is to disrupt the limits of electronic signal processing using photonic-electronic integration in advanced photonic-electronic semiconductor technologies, such as silicon-on-insulator (SOI), silicon nitride (SiN), and indium phosphide (InP). Ultra-fast and energy-efficient information processing is required in many applications, such as communication systems, cloud computing, artificial intelligence, smart factory, instrumentation, and medical technology.
Besides speed and energy efficiency, these systems have unique properties like:
- Low cost
- Miniaturization
- Robustness
- Programmability
Research on nanophotonic-nanoelectronic circuits and systems will not only increase signal processing speed and enable novel systems, but also significantly improve energy efficiency, thus helping to conserve natural resources and minimize the impact of today's information and communications technology on climate and the environment.
Project management: Prof. Dr. J. Christoph Scheytt, Heinz Nixdorf Institute of Paderborn University
Project partners: Prof. Dr.-Ing. Manfred Berroth (University of Stuttgart), Professor Dr.-Ing. Stephan Pachnicke (Christian-Albrechts University of Kiel), Professor Dr. Jeremy Witzens, Ph.D. (RWTH AACHEN), Professor Dr.-Ing. Christoph Scheytt (Paderborn University), Professor Dr. Thomas Schneider (TU Darmstadt), Professor Dr. Ronald Freund (TU Berlin), Professor Dr.-Ing. Norbert Hanik (TU München), Professor Dr.-Ing. Lars Zimmermann (TU Berlin), Professor Dr.-Ing. Dietmar Kissinger (University of Ulm), Professor Dr.-Ing. Robert Weigel (Friedrich Alexander University of Erlangen-Nürnberg), Professor Dr.-Ing. Frank Ellinger (TU Dresden), Professor Dr.-Ing. Dirk Plettemeier (TU Dresden), Professor Dr.-Ing. Sebastian Randel (KIT), Professor Dr.-Ing. Martin Schell (Fraunhofer Institute for Telecommunications), Professor Dr.-Ing. Christian Koos (KIT), Professor Dr.-Ing. Thomas Zwick (KIT), Professor Dr.-Ing. Franz Xaver K?rtner (University of Hamburg)
Duration: 2020 - 2025
Total project volume: 29.6 million euros
Project volume of Paderborn University: 1.595 million euros
Funded by: Federal Ministry of Education and Research
For future tasks such as autonomous driving or Industry 4.0, ever larger amounts of data from an increasing number of sensors must be analysed in the shortest possible time with the help of complex algorithms and artificial intelligence (AI). However, the corresponding processors must not only meet high requirements in terms of computing power, but also in terms of energy efficiency, reliability, robustness and safety, which go far beyond current possibilities. The BMBF's ZuSE projects are designed to meet the user industries' urgent need for future-proof, trustworthy processors that are tailored to their specific tasks and offer high performance.
The Scale4Edge project is researching how the development time and costs of application-specific edge processors can be significantly reduced. Such processors usually perform crucial initial calculations while mobile and close to sensors, at the interface from the real to the virtual world. They must therefore not only be particularly reliable, performant and robust, but also energy-efficient. Furthermore, they must offer a high degree of trustworthiness. With the emerging scalable and flexibly expandable development platform based on the licence-free, open-source RISC-V instruction set architecture, individual processors with these properties can be developed efficiently and cost-effectively.
Project management: apl. Prof. Dr. Wolfgang Müller, Heinz Nixdorf Institute at Paderborn University
Project partner: Infineon Technologies AG, oncept engineering GmbH ASIC- und Softwaretechnologie, TU Kaiserslautern, AbsInt Angewandte Informatik GmbH, Robert Bosch GmbH, Eberhard-Karls-Universit?t Tübingen, OFFIS e.V., TU München, Albert-Ludwigs-Universit?t Freiburg, IHP GmbH, MINRES GmbH, TU Dresden, ARQUIMEA Deutschland, SYSGO GmbH, TU Darmstadt, EPOS GmbH, Universit?t Bremen, FZI Forschungszentrum Informatik
Duration: 2017 - 2023
Total project volume: 3.2 million euros
Project volume of the University: 1.7 million euros
Funded by: German Research Foundation (DFG)
Distributed Acoustic Signal Processing over Wireless Sensor Networks
The project "Distributed Acoustic Signal Processing over Wireless Sensor Networks" conducts research on signal processing anc communication over acoustic sensor networks. Such an acoustic sensor network consists of nodes with microphones (possibly also loudspeakers) and communicates using wireless transmission techniques. The sensor network is typically connected to the Internet via one or more gateways. Such a network carries out acoustic applications (such as noise reduction and speaker separation). An obvious approach would be to transport all acoustic data collected by the sensor nodes to the gateway for processing. However, this is not necessarily the best possible approach (because of the high communication load, possibly large latency). It also gives away the potential benefit of processing the data already on the sensor nodes, thus reducing data volumes and latency. We are therefore developing approaches (inspired by trends such as microservices and network function virtualization) where acoustic signal processing can be broken into individual processing blocks and distributed over the individual nodes. In this follow-on project, we intend to continue our work on both distributed acoustic signal processing and the development of a framework for automated distribution of such blocks over the network. Specifically, we are looking at hardware aspects (especially with full-duplex audio capabilities) and the possibilities of using such hardware for synchronization in time-based MAC protocols or for estimating acoustic round trip times. This allows us to estimate and appropriately calibrate the spatial geometry of the setup in both static and dynamic environments. Building on information about the acoustic utility of individual nodes, we will address the problem of source selection (signals from which microphones should be included?) both from an acoustic and a network perspective. A key question will be how to handle such network aspects in dynamic scenarios. Dynamicity arise in particular from movement of acoustic sources and recording devices; such movements can be uncontrolled or controlled (e.g. in the case of robotic sensor nodes). Our work will result in a testbed that integrates the essential functions and will be an experimental environment for practical testing of the developed algorithms.
Project management: Dr.-Ing. J?rg Schmalenstr?er, Paderborn University
Coordination project
In daily life, we are surrounded by a multitude of noises and other acoustic events. Nevertheless we are able to effortlessly converse in such an environment, retrieve a desired voice while disregarding others, or draw conclusions about the composition of the environment and activities therein, given the observed sound scene. A technical system with similar capabilities would find numerous applications in fields as diverse as ambient assisted living, personal communications, and surveillance. With the continuously decreasing cost of acoustic sensors and the pervasiveness of wireless networks and mobile devices, the technological infrastructure of wireless acoustic sensor networks is available, and the bottleneck for unleashing new applications is clearly on the algorithmic side.
This Research Unit aims at rendering acoustic signal processing and classification over acoustic sensor networks more 'intelligent', more adaptive to the variability of acoustic environments and sensor configurations, less dependent on supervision, and at the same time more trustworthy for the users. This will pave the way for a new array of applications which combine advanced acoustic signal processing with semantic analysis of audio. The project objectives will be achieved by adopting a three-layer approach treating communication and synchronization aspects on the lower, signal extraction and enhancement on the middle, and acoustic scene classification and interpretation on the upper layer. We aim at applying a consistent methodology for optimization across these layers and a unification of advanced statistical signal processing with Bayesian learning and other machine learning techniques. Thus, the project is dedicated to pioneering work towards a generic and versatile framework for the integration of acoustic sensor networks in several classes of state-of-the-art and emerging applications.
Project management: Prof. Dr. Reinhold H?b-Umbach, Paderborn University
Sound Recognition with Limited Supervision over Sensor Networks
A fundamental problem for many machine learning methods is a discrepancy between the training data and the test data in a later application, which can lead to a significant drop in the classification rate. In acoustic event detection and scene classification in acoustic sensor networks, this problem is exacerbated because there is a very large number of possible sounds and because such networks can be deployed in widely varying geometric configurations and environments. For this reason, existing databases for acoustic event and scene classification will virtually never be a perfect fit for a new application in an acoustic sensor network.
The main goal of this project is therefore to develop methods that allow existing databases to be usable for distinct audio classification tasks in an acoustic sensor network despite this discrepancy. We assume that weakly annotated data, i.e., annotated only with the event class but not with timestamps, are available from another domain, and that unannotated data is available from the target domain. Procedures are now being developed to compute a strong annotation from a weak annotation in which start and end times of acoustic events are additionally annotated to compute domain invariant features, as well as procedures to perform domain adaptation to overcome differences between training data and test scenario in this way. We are also investigating adaptation at test time to adapt to changing acoustic environments and sensor configurations. In particular, deep generative neural models will be used. Appropriate network structures and objective functions will be developed to separate the different factors influencing the observed waveform, in particular the variation caused by the acoustic event from the variation of the signal caused by the environment. Furthermore, we will develop methods to detect unusual acoustic events, because these can be of particular importance for a distinct application.
Project management: Prof. Dr. Reinhold H?b-Umbach, Paderborn University
Project partners: Dr.-Ing. habil. Gerald Enzner and Prof. Dr.-Ing. Rainer Martin, Ruhr-Universit?t Bochum (RUB), Prof. Dr.-Ing. Walter Kellermann, Friedrich-Alexander Universit?t Erlangen-Nürnberg (FAU)
People-centered use of cyber-physical systems in Industry 4.0
Duration: 2014 - 2022
Total project volume: 4.7 million euros
Project volume of the University: 2,82 million euros
Funded by: Ministry of Culture and Science of the State of NRW
In the NRW Research College “Design of Flexible Working Environments” the effects of Industry 4.0 on the world of work and the role of humans are investigated. The challenge lies in the development of new, social infrastructures. This must anticipate the continuing rapid technological development and see people in the focus of development throughout their entire working lives. To this end, engineers will use methods and tools in the future that will make it possible to consider Work 4.0 as an integral part of product development. Integration into model-based product development is one of the scientific challenges of the Research Training Group. As a specific example, solutions are created for the human-centered, learning-promoting design of assistance systems in the assembly of mechatronic products.
Project management: Prof. Dr. Eckhard Steffen, Paderborn Center for Advanced Studies (PACE) and Prof. Dr.-Ing. Iris Gr??ler, Heinz Nixdorf Institute of Paderborn University
Project partners: other chairs of the Paderborn Center for Advanced Studies (PACE), University Bielefeld, it's OWL, Technologieberatungsstelle DGB NRW e.V., IG Metall NRW, Innovationsnetzwerk Energie Impuls OWL e.V., VDI
Duration: November 2020 - October 2025
Total project volume: 10.7 million euros
Project volume of the University: 743,000 euros
Funded by: German Federal Ministry of Education and Research
Artificial Intelligence technology (AI) is associated with far-reaching potential and opportunities for transforming industrial value creation. At the same time, AI is still perceived as a primarily technical option. An understanding of AI in the work context as a comprehensive socio-technical challenge has been rudimentarily established. To date, however, in the AI context, there is a lack of holistic and SMEs close labor research, that provides solution and application knowledge. This discrepancy is being addressed in this project. A basis is a comprehensive approach to the topic by linking People – Organization – Technology and a solution- and transfer-oriented focus in the implementation. The goal is a regional competence center ?AI in the working World of industrial SMEs” (in short: Arbeitswelt+). It is intended to serve as a contact point for companies and all the other stakeholders of the industrial work environment.
Competence management, employee participation, and technology acceptance
Artificial Intelligence will fundamentally change the work environment: AI systems support work processes, take over tasks, and create new fields of work. The identification of possible applications and the development of concrete solutions present challenges to small- and medium-sized enterprises, such as lack of professionals or unclear organizational and technological requirements. The Arbeitswelt+ competence center brings together findings from labor research in this future field. The key topics include for example workplace design, competence development, and change management. In pilot projects, research institutions and companies develop concrete solutions in which AI technologies are made available for different fields of application.
Transfer to mid-tier
The results and experiences from the pilot projects should be made available to small- and medium-sized enterprises. To achieve this, an information platform is being developed, best practices are being prepared, and events and workshops are being organized. Employees are qualified for the use of AI technologies in further training courses. In pilot projects, companies can use new AI technologies in cooperation with a research institution to solve specific challenges in their business. Transfer partners of the competence center such as owl maschinenbau and OstWestfalenLippe GmbH provide support.
Project management: Prof. Dr. Kirsten Thommes, Paderborn University
Explainability of Artificial Intelligence (AI)
Duration: 01.07.2021 - 30.06.2025
Total project volume: 14 million euros
Project volume of the University: 8.2 million euros
Funded by: German Research Foundation (DFG)
How can humans make sense of decisions made by machines? What do algorithmic approaches tell us? How can artificial intelligence (AI) become something that is understandable?
It is frequently the case that technical explanations require prior knowledge about how AI works and are difficult to follow. In the Transregional Collaborative Research Centre “Constructing Explainability” (TRR 318), researchers are exploring how to integrate users in explanatory processes.
The interdisciplinary research team is approaching this topic from two angles: first by understanding the mechanisms, principles, and social practices behind explanations, and second, by considering how this can be designed into artificial intelligence systems. The goal of the project is to make explanatory processes more intelligible and to create easily understandable assistive systems.
A total of 21 project leads, supported by some 30 researchers at Bielefeld University and Paderborn University from a wide range of fields spanning from linguistics, psychology, and media studies to sociology, economics, and computer science are investigating the co-construction of explanations.
Project management: Prof. Dr. Katharina Rohlfing, Paderborn University (Speaker); Prof. Dr. Philipp Cimiano, University Bielefeld (Co-Speaker)
Duration: 01.08.2022 - 31.07.2026
Total project volume: 16.40 million euros
Project volume of the University: 5.5 million euros
Funded by: Ministry of Culture and Science of the State of North Rhine-Westphalia
SAIL addresses the next stage of AI development by looking at the entire life cycle of AI systems and their technological and societal implications. Accordingly, SAIL is interdisciplinary in nature involving researchers from the core areas of AI, engineering, computer science, and the social sciences and humanities. The research program is divided into three research pillars and two application areas. Basic research will look at the interaction of AI and human partners in evaluating and coordinating errors and goals. In addition, mature AI systems are analyzed to model and mitigate their potentially undesirable long-term effects at the functional, cognitive, and societal levels. Finally, the entire AI lifecycle is considered in terms of efficiency to enable the practical deployment of AI systems with minimal energy, time, and storage requirements and low cognitive effort on the part of the human partner.
The application areas of SAIL are intelligent industrial work environments and adaptive assistance systems for healthcare.
Project management: Prof. Dr. Axel-Cyrille Ngonga-Ngomo, Institute for Computer Science at Paderborn University
Project partners: Scientists of Paderborn University (Prof. Dr. Katharina Rohlfing, Jun. Prof. Dr. Ilona Horwath, Prof. Dr. Eric Bodden, Prof. Dr. Reinhold H?b-Umbach, Jun. Prof. Dr. Sebastian Peitz, Prof. Dr. Marco Platzner, Prof. Dr. Ansgar Tr?chtler)
Individualized IT-services in dynamic markets
Duration: 01.07.2011 - 30.06.2023
Total project volume (University): 30 million euros
Funded by: German Research Foundation (DFG)
The objective of CRC 901 – On-The-Fly Computing (OTF Computing) – is to develop techniques and processes for automatic on-the-fly configuration and provision of individual IT services out of base services that are available on world-wide markets. In addition to the configuration by special OTF service providers and the provision by so-called OTF Compute Centers, this involves developing methods for quality assurance and the protection of participating clients and providers, methods for the target-oriented further development of markets, and methods to support the interaction of the participants in dynamically changing markets.
CRC 901 is divided into four project areas. Project area A is concerned with the algorithmic and economic basics for organizing large dynamic markets. This involves, on the one hand, algorithmic processes for organizing large networks in general and the interaction in networks in particular and, on the other hand, economic concepts for incentive systems in order to direct the participants in the markets. Project area B investigates processes of the modeling, composition and quality analysis of services and service configurations aiming at on-the-fly development of high-quality IT services. Project area C develops reliable execution environments for on-the-fly computing and is concerned with questions of the stability and security of markets, the organization of highly heterogeneous OTF Compute Centers and the provision of configured services by those centers. This project area also involves an application project that deals with systems for optimizing supply and logistic networks, which is considered a long-term application field for the results of the CRC. Project area T bundles the transfer projects of our CRC, which provide a framework for joint research by our CRC researchers and external partners and facilitate the exchange of results from applied research back into our basic research.
Project management: Prof. Dr. Friedhelm Meyer auf der Heide, Heinz Nixdorf Institute of Paderborn University
Projekt partners: various chairs of the Department of Computer Science of the Faculty of Computer Science, Electrical Engineering and Mathematics of the Paderborn University, various chairs of the Departments 1, 3 and 4 of the Faculty of Business Administration and Economics of the Paderborn University, BaER-Lab Business and Economic Research Laboratory, C-LAB Cooperative Computing and Communication Laboratory, DaSCo Paderborn Institute for Data Science and Scientific Computing, IEM Fraunhofer Institute for Mechatronic Systems Design, IFIM Institute for Industrial Mathematics, PC2 Paderborn Center for Parallel Computing, SI-Lab Software Innovation Lab and Weidmüller Interface GmbH & Co. KG and Diebold Nixdorf Systems GmbH
Term: 01.01.2024 - 31.12.2026
Total funding volume: 12.5 million euros
Funding volume of the university: 1.9 million euros
Funded by: Federal Ministry for Digital and Transport Affairs (BMDV)
A current challenge in the transformation of the transportation system is to combine individuality with efficiency and sustainability. In this context, automation, autonomous driving, intelligent traffic management, digital connectivity and networked mobility play a central role. The aim of the "enableATO" project is to implement modern ideas for automated rail mobility and investigate them using new rail-based mobility concepts for rural areas. The focus is on technologies related to automated driving such as perception by sensors, licensing issues, intelligent maintenance and the demonstration of the technologies, e.g. on the MONOCAB - an autonomous monorail. At the same time, initial questions regarding user acceptance are being researched and addressed and the scientific dialog strengthened. The project, which is based in Minden at the RailCampus OWL, is embedded in the German Center for Future Mobility (DZM), which is establishing a nationwide research network for mobility research at four locations in Hamburg, Annaberg-Buchholz, Minden and Karlsruhe.
Three chairs and specialist groups at Paderborn University are involved in the project: the Chair of Dynamics and Mechatronics (LDM) of Professor Dr.-Ing. habil. Walter Sextro, the Chair of Data Management in Mechanical Engineering (DMB) of Professor Dr. Iryna Mozgova and the Machine Learning and Optimisation (MaLeO) group of Professor Dr. Heike Trautmann. The activities of the LDM pursue the goal of implementing intelligent maintenance of rail vehicles in order to achieve greater operational safety, less downtime and lower overall costs. The activities of the DMB support the development of a digital twin for automated maintenance management by realizing a semantic and machine-readable representation of the data and metadata generated in the project. The activities of MaLeO focus on simultaneously taking into account various competing objectives. Examples of this are the conflict between energy efficiency and robustness, where various optimal compromises can be adapted depending on the situation in order to be able to react optimally to changing preferences or environmental influences.
Project management: Overall project management Prof. Dr. Stefan Witte, TH OWL
Sub-project management TP 1 "ATO enabler technologies" Prof. Dr.-Ing. habil.Walter Sextro, University of Paderborn
Project partners: Bielefeld University of Applied Sciences, Ostwestfalen-Lippe University of Applied Sciences, Bielefeld University, Fraunhofer Institute for Engineering Design and Mechatronics (IEM) and Fraunhofer Institute for Industrial Automation (IOSB-INA), DB Systemtechnik GmbH, HARTING Stiftung & Co.KG, Pilz GmbH & Co.
KG and W?lfel Engineering GmbH & Co. KG
Further projects
Duration: 2019 - 2022
Total project volume: 3.7 million euros
Project volume of the University: 3.4 million euros
Funded by: European Regional Development Fund (ERDF)
Today's energy supply system is characterized by grid-connected, geographically distributed structures that must meet the highest safety and reliability standards. The transformation of this system to a sustainable structure characterized by renewable energies is a central societal challenge of the 21st century. The inherent volatility of renewable energy sources requires a move away from hierarchically structured top-down energy grids towards flexible, cross-sectoral and intelligent energy systems by means of a cellular approach. Therefore, in the course of the energy transition, so-called microgrids represent an important solution component to ensure a secure, clean, efficient and cost-effective energy supply in the future. The term microgrid refers to the concept of a local grid consisting of energy sources, storage devices and loads from different sectors, which operates with or without external grid connection. This structure creates a variety of flexibilization options in operation. The local integration of renewable energies by means of microgrids, for example within industrial companies or residential quarters, relieves the distribution and transmission grids and reduces the need for cost-intensive and resource-intensive grid expansion. The efficiency of the energy supply is also increased, since the lossy transport over long distances is avoided and the energy is increasingly generated and consumed locally. Through local storage integration, microgrids can also provide grid-serving services within primary, secondary and tertiary control and even operate autonomously in emergencies as so-called island grids. These grid-stabilizing measures can be enhanced if geographically neighbouring microgrids are coupled to form virtual power plants or large-scale storage facilities. The potential of microgrids has so far been investigated worldwide mainly in academic circles. However, industrial implementation is fraught with high technical and financial risks, especially for SMEs. For successful transfer to industry, however, both extensive practical studies and the upgrading of microgrid components (e.g. power-to-X technologies) for field use are essential. In order for NRW to benefit from the enormous value creation potential of this technology field in a competitive world market in the future, R&D efforts must be intensified and the transfer of knowledge to industry must be strengthened. To this end, the Competence Center for Sustainable Energy Technology (KET) is setting up the "Microgrid Laboratory" under the leadership of the Department of Power Electronics and Electrical Drives. The core of the concept is the development and establishment of a highly flexible, modular development and validation platform for component-related and systemic microgrid research in NRW. High-performance grid nodes are to be developed for the construction of the laboratory. These are freely configurable and flexibly controllable. By means of suitable software, they exactly reproduce the behavior of any components, e.g. batteries, wind turbines or CHPs. The network nodes are interconnected by controllable switches in freely selectable topologies. This hardware and software reconfiguration allows practical research within local grids up to the megawatt range.
Project management: Prof. Dr.-Ing. Joachim B?cker, Paderborn University
Project partners: other KET chairs (EIM-NEK, MB-FVT, MB-TheT) of the Paderborn University
Duration: 01.09.2019 - 19.06.2022
Total project volume: 1.9 million euros
Project volume of the University: 414,543 euros
Funded by: Federal Ministry for Economic Affairs and Energy
RAKI develops novel methods for scalable, comprehensible machine learning with "humans in the loop".
The project focuses on scalable AI-driven optimization of the configuration and operation of industrial plants as well as necessary production logistics.
Distributed implementations enable the processing of large amounts of data for the automatic generation of explanations. The development and application partners AI4BD and 360直播吧mens plan to use key parts of the RAKI framework after integration into their CBR and Mindsphere platforms. The results of RAKI form the basis for novel data products such as AI-driven interactive configuration software for industrial plants, enabling scalable development of smart services in industrial production.
Project management: Prof. Dr. Axel-Cyrille Ngonga Ngomo, Paderborn University
Project partners: AI4BD Deutschland GmbH, 360直播吧mens AG, Leipzig Universit?t
Duration: 01.07.2020 bis 30.06.2024
Total project volume (University): 1,591,507 euros
Funded by: Federal Ministry of Education and Research
In the course of digitalization, artificial intelligence and machine learning are currently receiving a great deal of attention from science and industry. In control engineering, data-driven methods are already used, but mainly as an alternative to physical modeling of dynamic behavior or to subject-specific methods of control design or in a pragmatic simple combination.
Therefore, the goal of the junior research group "DART - Data Driven Methods in Control Engineering" is to develop novel hybrid methods for control engineering problems by combining the well-established physically motivated methods with modern data driven methods to achieve the highest possible performance in control design. These hybrid approaches go far beyond simple, pragmatic combinations because they are based on structurally well-justified compositions of methods tailored to each other that synergistically combine their advantages. The typical design steps such as modeling and parameter identification of the physical system, observer design, controller design and commissioning of the controller are addressed. Thus, we are able to extend all aspects of classical control engineering as a complete system by hybrid approaches with data-based methods.
Project management: Dr.-Ing. Julia Timmermann, Heinz Nixdorf Institute of Paderborn University
Duration: 2020 - 2022
Total project volume: 1.4 million euros
Project volume of the University: 500,00 euros
Funded by: Federal Ministry of Education and Research
The DAIKIRI research project aims to develop the first automatic procedures for the semantification of industrial data and data-driven diagnosis of industrial plants. These methods will be used to develop diagnostic smart services for industrial data and to evaluate them with data from real use cases. DAIKIRI will develop AI procedures that are self-explanatory and automatically verbalize AI results, making them more transparent. Users will thus be able to understand how the results were obtained and decisions based on these results can be made with confidence.
Project management: Prof. Dr. Axel-Cyrille Ngonga Ngomo, Paderborn University
Project partners: USU Software AG, elevait GmbH & Co. KG, pmOne AG
Duration: 2019 - 2022
Total project volume: 1 million euros
Project volume of the University: 482,000 euros
Funded by: European Regional Development Fund
Paderborn/Aachen, May 28, 2019. How can autonomous vehicles with electric drives be developed as examples of complex cyber-physical systems faster, more cost-effectively, and with lower resource consumption? And how can the safety of these vehicles on the road be increased? A team of researchers and developers from dSPACE, e.GO Mobile AG, and the Institute of Industrial Mathematics at the University of Paderborn started a research project a few weeks ago to answer this complex question. The project is funded by the German state of North Rhine-Westphalia (NRW) and the EU as part of the IKT.NRW lead market competition. The project, scheduled to run for 36 months, aims to simultaneously develop and test cyber-physical systems (CPS) using the example of an electric autonomous vehicle. It is abbreviated SET CPS according to its German title.
In vehicle development, trends such as automated driving and the development of alternative drives, such as battery-powered vehicles, are causing a sharp increase in the demands placed on the underlying systems. When these types of vehicles are developed, the aim is to optimize a large number of target parameters such as fuel consumption, range, and driving comfort, and to guarantee the safety of the system. Researchers and developers in the SET CPS project are now looking for new approaches to make the development processes for manufacturers and suppliers reliable and economical, and enable them to meet development times.
The project therefore aims to develop intelligent, simulation-based processes that improve and systematize the development and test process of complex vehicles and increase the degree of automation. For this purpose, design and testing are more closely interlinked to achieve a high level of quality even in the early development phases. The researchers also use the latest mathematical methods from multi-objective optimization, which is one of the core competencies of the Institute of Industrial Mathematics. This enables them to simultaneously achieve competing goals, such as energy efficiency, comfort, and costs, while ensuring the safety of the system. The plan is to integrate the new processes into the dSPACE tool chain and evaluate them using an example from e.GO vehicle development.
“As consortium leader of the project, our goal is to take the next step toward a one-stop development environment for autonomous vehicles," explained Dr. Rainer Rasche, Group Manager Test Automation at dSPACE. “The resulting tool chain enables the developer to adjust the parameters of an ECU to different, typical traffic situations and simultaneously test them in the simulated environments. This will enable our customers to accelerate their development."
Dr. Michael Riesener, Vice President Corporate Research at e.GO Mobile AG, said: “The simultaneous development and testing of new systems for our electric vehicles made possible by SET CPS also enables us to achieve fast development times and to design the vehicles with an even stronger focus on requirements. For this reason, we look forward to advancing the research project in cooperation with our partners."
About e.GO Mobile AG
e.GO Mobile AG was founded in 2015 by Prof Dr Günther Schuh as a manufacturer of electric vehicles. The more than 400 employees use the campus's unique network of research facilities and approximately 360 technology companies on the RWTH Aachen Campus. Highly agile teams work on a variety of cost-effective and customer-focused electric vehicles for short-haul traffic. e.GO Mobile AG is currently commissioning its new plant in Rothe Erde, Aachen, for series production.
Project management: Dr. Sebastian Peitz, Paderborn University
Project partners: Prof. Dr. Michael Dellnitz, Paderborn University; dSPACE; e.GO Mobile AG
Duration: 01.01.2019 – 30.06.2022
Total project volume (University): 944.132 euros
Funded by: Federal Ministry of Education and Research - BMBF (Initiative "Research Laboratories Microelectronics Germany" (ForLab))
Motivation
Wide bandgap (WBG) power semiconductors like Gallium-Nitride (GaN) or Silicon-Carbide (SiC) show massive innovation potential for various power electronic applications. These new semiconductor technologies characterized by significantly reduced switching losses enable both, power electronic systems with highest efficiency and outstanding power densities, allowing a considerable miniaturization of power electronic applications. As a consequence, also the system costs of a large number of applications, like e.g. On-Board Chargers and DC-DC-Converters of automotive EVs, IT-Power Supplies of data centers and mobile telecom networks (5G and beyond), Renewable Energy generation/transmission/distribution, Medical Appliances (CT, MRT, ultrasonics) can be decreased, although the WBG-semiconductor components today show higher costs than their conventional, silicon-based counterparts. Next to the component costs, the comparably rare reliability data of the new WBG-power semiconductors are considered as a last hurdle to be passed before ramping up an industrial large-scale utilization of this groundbreaking technology. This ramp up, moreover would lead to reduced WBG-component costs further accelerating the technology transition.
Project objectives
Accordingly, two main objectives will be addressed at LEA within the next years: Identification, development and optimization of further advantageous applications benefiting from WBG-based power designs as well as improving reliability of those WBG-based power electronic applications. Focusing on these topics, special support shall be offered also to small- and medium-sized enterprises within dedicated follow-up projects.
The new lab infrastructure currently being acquired and put into operation in our 2-story lab building (IW) will enable LEA to adequately meet these objectives throughout the next decade.
Project strategy
The FUTURE LAB equipment enables the following technological steps as strategical subjects:
- Reducing the size of chokes, transformers and filter components by drastically increasing the switching frequency of power electronic
- Characterization of new WBG-semiconductors regarding switching behaviour and losses
- Validation of core and winding losses in magnetic components
- Professional manufacturing of custom-made mechanical components like coil formers or ferrite cores for specialized magnetics
- Extensive qualification of developed demonstrators and prototypes, incl.:
- EMI testing and optimization
- Testing and improving operation under harsh climate conditions
- Reliability analysis of components and prototype systems under climatic stress conditions
Technological Challenges
Below challenges are considered and will be addressed by appropriate lab equipment:
- Fast switching of WBG-semiconductors leads to a high demand in EMI-filtering and -shielding
- High dv/dt-rates stress the isolation of transformers, drive circuits and auxiliary power supplies
- Novel packages of power semiconductors require special concepts for cooling and new thermal solutions
Envisaged Investments
The main laboratory equipment investments are:
- Professional CAD-tool for multilayer PCB-design (SW)
- Precise assembly unit for smallest SMD-components
- 3D-printer for specifically designed mechanical components
- CNC-milling machine for application-optimized ferrite cores within magnetic components
- Coil winding machine (CNC) for magnetic components
- Testbed for high-dv/dt switching loss measurements
- Testbed for calorimetric efficiency measurements
- Testbed for EMI-measurements
- Climatic exposure test chamber with vibrating table for environmental testing
Project management: Prof. Dr.-Ing. Joachim B?cker, Paderborn University
Project partners: Fraunhofer IISB Erlangen, Fraunhofer ENAS Paderborn
Duration: 2017 - 2022
Total project volume: 595.592 euros
Project volume of the University: 307.146 euros
Funded by: German Research Foundation (DFG)
Our objective in the proposed project is to develop adaptive controller design techniques for tracking control of systems of nonlinear differential-algebraic equations with applications to underactuated mechanical multibody systems. While closed-loop tracking control of fully actuated multibody systems is well-established, systematic methods for underactuated systems are lacking. The latter type refers to multibody systems having more degrees of freedom than actuators, which results in diverse systems theoretic properties. Typical examples of practical relevance are systems with passive joints, cranes, cable robots or lightweight systems with flexible bodies. Especially for more complex systems with kinematic loops or flexible bodies, differential-algebraic equations are appropriate for modelling. In the proposed project, we first aim to conduct a structural analysis of multibody systems. Thereby it is intended to characterize important systems theoretic quantities and properties such as input-to-state stability, index, relative degree and internal dynamics on the basis of physically motivated considerations. Problems in controller design for multibody systems may arise when the index or relative degree of the differential-algebraic model exceed one or the system has unstable internal dynamics. To compensate a higher relative degree, the funnel observer, which has been developed by the applicants Berger and Reis, shall be applied. Unstable internal dynamics are aimed to be circumvented by an application of feedforward control strategies based on model inversion. Such a model inversion shall be based on so-called servo-constraints, which again lead to differential-algebraic equations. The performance and implementability of the developed methods is to be constantly verified by means of selected experiments.
Project management: Jun.-Professor Dr. Thomas Berger at Paderborn University
Project partners: Prof. Dr.-Ing. Robert Seifried (Technische Universit?t Hamburg), Mitverantwortlicher: Prof. Dr. Timo Reis (Universit?t Hamburg)".
Duration: 2018 - 2026
Total project volume (Sub-project E1): 516.200 euros
Project volume of the University: 302.500 euros
Funded by: German Research Foundation (DFG)
Within the DFG's Collaborative Research Center (Sonderforschungsbereich) 1119, CROSSING, we are heading the project on the Secure Integration of Cryptographic Software.
Together with Mira Mezini's Software Technology Group, we are researching means to aid developers in integrating cryptographic libraries securely into their software systems in sub-project E1.
Project management: Prof. Eric Bodden (sub-project E1.), Heinz Nixdorf Institute at Paderborn University
Speaker of the SFB1119: Prof. Marc Fischlin, TU Darmstadt
Duration: 01/2020 - 03/2023
Total project volume: 1,4 million euros
Project volume of the University: 836,000 euros
Funded by: European Union and State of North Rhine-Westphalia
The ability to develop innovative business models for one’s own products and services is of central importance for every company. At the same time, however, many small and medium-sized enterprises (SMEs) in particular find it difficult to fill the abstract term ?business model innovation“ with life, i. H. developing business model innovations in a targeted and systematic manner. This increases the risk that innovative products and services will not be successfully marketed – which in turn harms the competitiveness of companies and thus endangers jobs and social prosperity. This is exactly where this project comes in. In the Smart GM project at the SICP – Software Innovation Campus Paderborn, the SI-Lab of the University of Paderborn, the professorships Kundisch, Hüllermeier and Wünderlich and the companies myconsult, UNITY, WP Kemper and Fellowmind are working together on an assistance system that suggests its users suitable innovative business model ideas. The basis for this is, on the one hand, an extensive knowledge base on business models and, on the other hand, artificial intelligence. The AI-algorithms should generate new ideas from the large number of possible combinations. These are then evaluated on a public crowd platform and by customers and experts. With an increasing number of ratings, the quality of new business model proposals of the assistance systems is also increased.
For the first time, the Smart GM project combines competencies and methods from the areas of business model innovations, technology acceptance, machine learning, (crowd-based) evaluation of idea quality and computer-aided idea generation for the development of business model innovations and paves the way for a new generation of business model innovation methods – from passive support to active assistance.
Project management: Prof. Dr. Dennis Kundisch, Paderborn University
Duration: 10/2020 - 09/2023
Total project volume: 2.4 million euros
Project volume of the University: 456,000 euros
Funded by: Ministry for Economic Affairs, Innovation, Digitalisation and Energy of the State of North Rhine-Westphalia
The PredicTeams project aims to develop a practice-oriented framework for predictive competence management for agile teams. In order to enable companies to manage the transition to agile teamwork in digital work environments, the project focuses on the following goals:
- Identification and operationalization of competences for agile teamwork in the context of digital working environments and the provision of a database with instruments for measuring relevant competences
- Method for simplifying the process of competence assessment using semantic language analysis
- Methodology for the analysis of competence profiles
- Show-case applications for assessing competences with the help of semantic text analysis and for the analysis of competence profiles on the basis of fuzzy-set qualitative comparative analysis
- Models and methods as well as a guideline for the design of a predictive competence management and future-oriented team staffing
The goals are achieved by taking up state-of-the-art measuring instruments and methods in the field of human resources and organizational research as well as empirical methodology, developing them further, adapting them for use in companies and testing them based on test data. For this purpose, employees’ competence data are evaluated and newly collected in order to significantly reduce assessment dimensions. Exemplary data analyses will be implemented and evaluated. In addition to the identification of the most important competences, the project aims to simplify the process of competence assessment through spoken comments and automated text analysis. The simplified process allows for continuous assessments and moves away from annual written statements. The planned measures will provide the basis for a time-efficient, state-of-the-art assessment and analysis of competences in companies. Through the use of the developed methods and models, companies are enabled to move away from administrative competence management and towards predictive competence management. The project is both practically and scientifically innovative, since predictive HR analytics is much discussed, but is still in its infancy.
The project is conducted in the context of the technology cluster it's OWL. It is supported by the Ministry for Economics, Innovation, Digitalization and Energy of NRW. The project is funded with 2.4 mio. Euro.
Project management: Prof. Dr. Kirsten Thommes, Paderborn University
Duration: 01.09.2019 - 31.08.2022
Total project volume: 5,861,703 euros
Project volume of the University: 571,336 euros
Funded by: Federal Ministry for Economic Affairs and Energy, Funding code: 03EI6012F
The FLEMING project aims to revolutionize continuous function monitoring, specifically the current use of sensors in distribution grids, by combining artificial intelligence (AI) methods with advancements in sensor technology, and thus contribute significantly to the success of Germany's energy and mobility transition.
The focus of German climate and energy policy is on a massive and area-wide integration of plants for the generation of renewable energies as well as on an integration of charging stations for electromobility into the existing power grid. The resulting numerous load fluctuations - e.g., caused by decentralized solar plants - as well as the temporally and spatially concentrated energy demand caused by charging infrastructure (eMobility) lead to a very large load on electrical equipment and components, up to overload. At the same time, grid operators are under increasing efficiency and cost pressure.
Critical Relevance of the Current Network Condition
Grid operators require, on the one hand, a better understanding of the current status of the existing grid and its components in order to meet the goals of the energy and mobility transition while keeping the same quality of supply (monitoring). This will enable for the early detection and prediction of possible damage and equipment failures, as well as the prevention of such failures through improved control. Smart load management, on the other hand, necessitates the use of sensors that are sufficiently accurate, reliable, and easy to retrofit. Only then will more flexible grid utilization, which takes advantage of temporary overload potential, be possible, as well as the nationwide expansion of energy distribution infrastructure that will be required in the future, especially in the light of the rapidly increasing electrification of the automotive sector.
The scenario calls for the end-to-end use of sensors, information and communication systems to collect the necessary data from the individual network resources and components. Sensor solutions for condition monitoring that are currently available are only used in niche or peripheral applications. A universal application fails at the moment due to very complicated engineering as well as the sensor systems' limited life span and performance, limiting them to simple monitoring tasks, mostly of individual equipment. Furthermore, existing sensor technology is typically only available for one manufacturer's plants, preventing transferability and obstructing generic, system-wide data processing. The goal of the project is to improve present sensor deployment in distribution grids by combining artificial intelligence (AI) methodologies with sensor technology expansion. All key features of sensor deployment in electrical equipment are included in the sub-goals derived from this.
Project management: Prof. Dr. Daniel Beverungen (Paderborn University) and Prof. Dr. Eyke Hüllermeier (Paderborn University)
Project partners: ABB AG Forschungszentrum Deutschland, Forschungsinstitut für Rationalisierung e.V. (FIR) from Aachen, Karlsruher Institut für Technologie (KIT), S?C Energie and H2O GmbH from Coburg and Heimann Sensor GmbH
Duration: 01.01.2020 - 31.12.2022
Total project volume: 1.1 million euros
Project volume of the University: 242,824 euros
Funded by: European Union and the State of North Rhine-Westphalia
The interactive, multimodal culture platform “OWL Live” intends to bundle the cultural offerings of the Ostwestfalen-Lippe (OWL) region, make them more visible and usable in the future, as well as establish as many interfaces as possible to existing systems. OWL.LIVE is for actors and public service providers, cultural intermediaries, and citizens. The goal is threefold. First, we strive to enable citizens to find suitable cultural events through individualized filter mechanisms. Second, we will better connect cultural stakeholders across sectors, strengthen the visibility of voluntary workers and associations, overcome regional borders, and – especially for OWL as a rural area – guarantee sufficient mobility to enable cultural participation. Third, actors and public service providers benefit from “OWL Live” as it provides services for organizing cultural events and other projects. In summary, OWL.LIVED is an intelligent, target group-specific, user-oriented platform that contributes to establishing OWL as a cultural brand, making the cultural audience perceive the rich cultural region OWL more completely.
Project management: Prof. Dr. Daniel Beverungen, Paderborn University
Project partners: OstwestfalenLippe GmbH, Bielefeld; aXon Gesellschaft für Informationssysteme mbH, Paderborn
Duration: 01.01.2018 - 31.12.2022
Total project volume: not published due to contractual conditions
Project volume of the University: not published due to contractual conditions???????
Funded by: Cottbus Chamber of Industry and Commerce, several automotive companies, telematics companies and logistics companies
The transportation sector accounts for approximately 25% of the Greenhouse Gas emissions. Minimizing fuel consumption is one of the main goals of climate actions. For logistic companies, minimizing fuel consumption has the beneficial side effect of lowering variable costs. Even though social and firm goals are aligned, many firms fail to bring down fuel consumption. One of the main reasons is the driving behavior of truck drivers.
In this project, we combine insights from behavioral science & technology and improve feedback mechanisms for truck drivers. We use feedback mechanisms and gamification. Our first results led to a sustainable reduction of about 10% of the fuel.
We also analyze how environmental conditions, especially varies aspects of traffic density affect drivers’ inclination towards automation and eventually good driving behavior.
Project management: Prof. Dr. Kirsten Thommes, Paderborn University
Project partners: Brandenburg University of Technology and various industry partners
Duration: April 2021 till March 2024
Total project volume: 603.220 euros
Project volume of the University: 307.686 euros
Funded by: German Research Foundation (DFG)
The project aims to develop methods for predicting the remaining useful life (RUL) of systems operating under non-stationary conditions, such as varying loads and speeds. Therefore, classical empirical models from the engineering field will be combined with methods from the field of artificial intelligence. This hybrid approach will be used to categorize operating conditions, identify failure modes, and predict the RUL of technical systems. In addition, these methods will be employed to predict the RUL of systems already in use that have been retrofitted with suitable sensors but where no sensor data from their past operation is available.
Project management: Prof. Dr.-Ing. habil. Walter Sextro, Paderborn University and Prof. Dr. Eyke Hüllermeier, Ludwig-Maximilians-Universit?t München
Project partners: Prof. Dr. Eyke Hüllermeier, Ludwig-Maximilians-Universit?t München
Duration: 2022 - 2025
Total project volume: 455.554 euros
Project volume of the University: 226.260 euros
Funded by: German Research Foundation (DFG)
The objective of the proposed research project is the development, numerical implementation and analysis of the new control concept Funnel MPC (FMPC). This concept ties adaptive tracking control, learning and optimization based methods together in an innovative way. Funnel control and model predictive control (MPC) are both current research areas in control engineering and mathematical systems theory, which successfully balance theory and application. FMPC utilizes known advantages of both control strategies (e.g., compliance with output and control constraints, inherent robustness, excellent control performance) to achieve the long-term goal of a universal controller design for nonlinear systems. FMPC consists of three components:
1.) In a model-based part of the controller, elements from funnel control are integrated into MPC, e.g., by incorporating the high-gain factor from the funnel controller in the construction of the stage costs. This ensures compliance with the output constraints and ultimately allows to rigorously prove recursive feasibility via an optimality argument – without (stabilizing) terminal constraints and independent of the length of the prediction horizon.
2.) MPC does not guarantee robustness in general. Hence, it is a main objective to transfer the robustness inherent to funnel control to FMPC. To this end, the control loop is extended by a model-free component via coupling with a funnel controller with respect to the prediction error of the model-based part. For this combination, robustness with respect to model uncertainties is to be proved rigorously.
3.) Through a second extension of the control loop by a learning component a continuous model adaptation as well as a concomitant improvement of controller performance is achieved. For this purpose, unknown model parameters are approximated and the system state is estimated. Meanwhile, the robustified FMPC guarantees the strict satisfaction of the output constraints. Additionally, as numerical tests have shown, it induces a sufficient stimulation of the system, which ensures a high information content in the input-output data that is necessary for the learning process. This is to be characterized in a mathematically rigorous and laid out in a verifiable way by the concept of ?persistency of excitation“ within the project. As a proof of concept the control of magnetic levitation trains will be considered, where a regular feedback between theory and numerical practice is intended. In levitation control a prescribed distance between vehicle suspension and guideway must be ensured. Furthermore, a robustness with respect to uncertainties (e.g., the total mass of the vehicle depending on the occupancy of the passenger area) and disturbances (e.g., wind conditions) is crucial. At the same time, a high controller performance, including travelling comfort, is desirable. Exactly those properties are unified in the innovative concept FMPC.
Project management: Jun. Prof. Thomas Berger at Paderborn Unviersity
Project partners: Prof. Dr. Karl Worthmann (Technische Universit?t Ilmenau)
Duration: 10/2021 - 09/2023
Total project volume (University): 994.000 euros
Funded by: Federal Ministry of Education and Research - BMBF
With the funding approval of the Federal Ministry of Education and Research (BMBF), the project “Training, validation and benchmark tools for the development of data-driven operating and control processes for intelligent, local energy systems” (DARE) started at the beginning of October 2021. Over the next two years, scientists from the SCIP – Software Innovation Campus Paderborn will develop an open-source simulation and benchmark framework together with scientists from the Competence Center for Sustainable Energy Technology (KET) and the associated economic partners WestfalenWIND GmbH and Westfalen Weser Netz GmbH. The framework is intended to address problems that can arise when operating decentralized energy networks. The overarching goal of the project is to promote the transformation of the current energy supply system to a sustainable structure characterized by renewable energies.
Microgrids as a solution component for the energy transition
The transformation towards a sustainable, efficient and cost-effective energy supply structure is one of the central challenges of the 21st century. In order to realize the energy transition, cellular and decentralized energy systems, so-called microgrids, can represent an important solution component. Microgrids are local energy networks that operate both grid-connected and autonomously in stand-alone operation and can supply industrial companies and households with energy. They consist of energy sources (e.g. wind turbines), energy stores (e.g. batteries) and energy consumers from different sectors (electricity, heat, mobility).
“Microgrids have the advantage that, thanks to their local integration, renewable energy can be made available close to where it is consumed and can therefore be used directly by the consumer over a short distance. As a result, national energy networks can be relieved and the need for network expansion decreases. In addition, the proportion if regenerative energies increases, since the lossy transport over long distances and unnecessary shutdowns of regenerative power plants due to grid bottlenecks are avoided”, explains Dr. Gunnar Schomaker, R&D Manager “Smart Systems” at SCIP.
Central component for the production of the basic energy supply in emerging and developing countries
“The fact that microgrids can also operate autonomously in island mode is a typical case for remote, off-grid areas. In addition to the contribution to the energy transition in Europe, the microgrid represents a central building block for the production of the basic energy supply in emerging and developing countries (especially Sub-Saharan Africa), since the development of a central energy infrastructure in sparsely populated, rural areas is not feasible in the long term”, explains Dr.-Ing. Oliver Wallscheid, scientific director of the research project.
Challenges in operating microgrids
Microgrids can bring great potential for the energy transition and the establishment of the basic energy supply in emerging and developing countries, but this is also accompanied by challenges that still have to be overcome. The main challenge, and thus also the central research question of the project, is to ensure a consistent and efficient energy supply through operating and control processes. “Compared to the classic, central large networks, there are challenges with decentralized networks that affect stability, among other things. Because a secure energy supply is much more difficult to maintain in decentralized grids than in central grids, which are supported by conventional large power plants, due to the volatility of regenerative power plants and typically only low storage and reserve capacities”, explains Dr. Wallscheid.
“The traditional top-down strategies of large central networks cannot therefore be transferred to the operation and control of such stochastic, heterogeneous and volatile energy networks”, says Jun. Prof. Dr. Sebastian Peitz. “Instead, data-driven and self-learning processes are emerging as a possible solution, e.g. from the field of reinforcement learning. However, the problem here is that these learning and innovative control methods cannot be used directly in the field due to safety and availability aspects, but must first be improved and evaluated on the basis of synthetic data in a closed simulation cycle”, adds Jun. Prof. Peitz.
Although there are already solutions, they are also very heterogeneous and are often based on greatly simplified model environments, so that no statements can be made about a future transfer to practice. In addition, there is no establishment comparison standard that can be used to objectively and quantifiably evaluate data-driven controllers.
Open source simulation and benchmark framework
“The goal within our DARE project is therefore to build an open-source simulation and benchmark framework that maps the previously explained problem framework when operating decentralized energy networks. The research into data-driven controllers for energy technology should be accelerated and made comparable through easily accessible and standardized training, validation and benchmark tools”, says Dr. Wallscheid.
Through the integration of economic partners from energy technology practice, the project also attaches great importance to the depiction of realistic evaluation scenarios. The open source framework to be created will therefore also make an important contribution to the transfer of data-driven controllers from simulation to field use.
Project management: Dr.-Ing. Oliver Wallscheid, Paderborn University and Jun.-Prof. Dr. Sebastian Peitz, Paderborn University
Project partners: Kompetenzzentrum für nachhaltige Energietechnik (KET); Software Innovation Lab (SI-Lab); WestfalenWIND GmbH; Westfalen Weser Netz GmbH; Prof. Dr. Eyke Hüllermeier, LMU München
Duration: 01.04.2021 - 31.03.2023
Total project volume: 1.743.292 euros
Project volume of the University: 387.120 euros
Funded by: Ministry for Economic Affairs, Innovation, Digitalisation and Energy of the State of NRW
Processes form the organizational core of companies and help to structure them. Process mining can be applied to analyze these processes in a data-driven way. This approach is already established in business sectors such as online retailing. But industrial processes like product creation or individual order processing of machines require a high degree of creativity and expertise. Process mining in this field has not been sufficiently researched neither in practice or in science. This can be explained by a lack of availability of sufficient amounts of data on such processes. In addition, the data sets of industrial processes are more unstructured and flexible than e.g., an order process at a mail order company for standard goods, which makes the application of process mining much more difficult and addresses different challenges for the analysis.
The project "BPM-I4.0" aims at a complete development, implementation, and evaluation of process mining techniques for the mentioned industrial processes. This includes the analysis of past and running process instances, as well as the prediction of future process steps and the providing of targeted recommendations for action through prescriptive methods. For this purpose, innovative methods, concepts, algorithms and digital tools are developed and prototypically applied and evaluated in the product development process of Weidmüller GmbH & Co KG in Detmold and the order processing process of GEA Westfalia Separator Group GmbH in Oelde. CONTACT Software is also involved as a development partner to contribute its expertise in process mining and product lifecycle management. Paderborn University is represented by the SI-Lab of the Software Innovation Campus Paderborn with the departments of Prof. Daniel Beverungen and Prof. Oliver Müller. Also researchers of the Fraunhofer IEM are involved in the project.
The results of this project will support companies to improve their core processes by analyzing process data and proactively managing the execution of their processes to stay in competition in the medium and long term. Furthermore, the project provides important, scientific results in the still young research field of prescriptive process mining. In addition, the active application in the business environment also offers the opportunity to develop relevant contributions.
Project management: Prof. Dr. Daniel Beverungen, Paderborn University
Project partners: GEA Westfalia Separator Group GmbH, Oelde; CONTACT Software GmbH, Paderborn; Weidmüller GmbH & Co KG, Detmold; Fraunhofer Institute for Mechatronic Systems Design (IEM), Paderborn
Duration: October 2022 - September 2025
Total project volume (University): 617,716 euros
Funded by: German Research Foundation (DFG)
The priority program SPP2353 "Daring More Intelligence - Design Assistants in Mechanics and Dynamics" aims to develop an assistance system for the partially automated design of technical systems, combining methods from the fields of optimization, artificial intelligence, dynamics, and mechanics.
Within the HyM3 project, a flexible and adaptive data-driven framework for the multi-objective optimization of complex multibody systems will be developed. Multi-objective optimization of multibody systems involves many model calls and evaluations, which creates a conflict between computation time of the design and accuracy of the model: accurate models, which are required for a precise identification of the optimal design, are usually computationally expensive. Conversely, fast models that would result in acceptable computational cost tend to be inaccurate. This problem is exacerbated by the fact that in multi-objective optimization, not a single optimum, but the entire set of optimal tradeoffs (the Pareto set) must be computed.
To address this problem, the model should be adaptive during the optimization process. To save computation time for model calls where high accuracy is not required, the physical model is reduced. The inaccuracies resulting from the reduction are then corrected using data-driven model components. For model calls where high accuracy is required, the full physical model is used, which again can be improved by data-driven additions.
In the project, the Chair of Dynamics and Mechatronics is primarily concerned with the adaptivity of the models through hybrid modeling. Based on this, efficient, data-driven multi-objective optimization methods are developed in the Data Science for Engineering group to reduce the number of expensive simulations as much as possible.
Project management: Jun. Prof. Dr. Sebastian Peitz, Paderborn University and Prof. Dr.-Ing. habil. Walter Sextro, Paderborn University
Duration: 01 Jan 2023 to 31 Dec 2024
Total funding volume: 2,4 million euros
Funding volume of Paderborn University: 213.000 euros
Funded by: Federal Ministry of Education and Research
Dealing with spontaneous volunteers and their effective condieration in emergency, crisis and disaster situations involves considerable coordination challenges for authorities and organizations with security tasks (BOS). In the more recent past, the flooding of the Ahr valley, the Corona pandemic and the influx of Ukrainian war refugees led to various large-scale situations in which spontaneous volunteers played an important role. In practice, however, there is still a lack of tools and procedures to implement structured cooperation between BOS and the public quickly and in a targeted manner. This issue puts the challenge in the context of the digitalization of civil security.
In the lighthouse project "Koordination von Spontanhelfenden im Krisen- und Katastrophenfall" (KatHelfer-PRO), the joint consortium aims at developing a socio-technical solution for the coordination of spontaneous volunteers, which can be used directly as a software demonstrator (TRL 7) with an accompanying organizational concept. Cornerstones of the envisaged solution are the results and experience of the successfully completed projects KUBAS, ENSURE, REBEKA, WUKAS, KOKOS, KOPHIS and INKA, all funded by the BMBF civil security research programme (SIFO).
Members of the consortium: T-Systems (coordinator), Paderborn University, Martin Luther University Halle-Wittenberg, Fraunhofer FOKUS, University of Stuttgart, Malteser Hilfsdienst, DRK Kreisverband Berlin Sch?neberg-Wilmersdorf.
Verbundpartner: T-Systems (Koordinator), Universit?t Paderborn, Martin-Luther-Universit?t Halle-Wittenberg, Fraunhofer FOKUS, Universit?t Stuttgart, Malteser Hilfsdienst, DRK Kreisverband Berlin Sch?neberg-Wilmersdorf.
Ansprechpartner: Prof. Dr. Guido Schryen, Paderborn University
The project is supported by more than 20 associated partners, including Arbeiter-Samariter-Bund, Johanniter Unfall-Hilfe, Bundesamt für Bev?lkerungsschutz und Katastrophenhilfe, Berliner Feuerwehr, Stadt Halle (Saale), Stadt Cottbus, Kreisverwaltung Ahrweiler, Helferstab Hochwasser Ahr, Senatsverwaltung für Inneres, Digitalisierung und Sport der Stadt Berlin, Ministerium für Inneres und Sport des Landes Sachsen-Anhalt, T?V Rheinland and other universities and commercial enterprises.
Duration: 01.09.2021 – 31.08.2024
Total project volume (University): 510,100 euros
Funded by: German Research Foundation (DFG)
In this transfer project, we explore how techniques from the quality assurance of services in on-the- fly service markets can be applied to the pressing problem of securely managing open source dependencies in large software development ecosystems. To this end, novel techniques will be developed and evaluated to efficiently and precisely detect and mitigate the inclusion of known-to- be-vulnerable third-party dependencies within software compositions. The project aims to build an open-source tool chain called HEKTOR to support the secure development of applications and services. In principle, these developments should enable precise and efficient analysis of software artifacts on a large scale. The effectiveness of the developed techniques will be validated in a real environment at the partner company SAP SE.
Project management: Prof. Dr. Eric Bodden (Paderborn University)
Project partner: SAP Deutschland SE & Co. KG
Duration: 01.09.22 – 31.08.25
Total project volume (University): 900,000 euros
Funded by: Federal Ministry for Education and Research
Motivation
Modeling complex dynamical systems is a challenge in many disciplines such as engineering, natural and social sciences. Corresponding mathematical models are the basis for many applications such as process monitoring and control of technical systems or for the prediction of pandemics. Expert-based approaches reproduce system behavior in a robust and interpretable way, but often require a lot of time and human resources. Therefore, a strong trend towards data-based modeling of dynamic systems using machine learning has developed. These black-box models can be generated quickly with available software tools and without significant prior knowledge. However, their mode of operation or problem solving strategy are poorly comprehensible or explainable.
Goals and Procedure
The goal of the junior research group "ML-Expert" is to develop a hybrid modeling of dynamic systems that incorporates both data and expert knowledge. To this end, we will investigate, among other things, how a priori model structures as well as system-theoretical model properties can be integrated into the model-building process at different levels of abstraction. Based on this, automatable method and software packages are to be developed, which comprise the data generation, the actual modeling process as well as the final validation. This should decisively accelerate and improve the model quality in terms of accuracy, robustness and complexity for various application domains.
Innovations and perspectives
The developed solutions will be made available free of charge as open source. Efficient and resource-oriented data generation, model building and validation will enable fast development cycles in the future, which is particularly relevant for industrial applications, e.g. in the automotive, energy or automation industries. However, the planned work will be domain-spanning.
Project management: Dr.-Ing. Oliver Wallscheid, Paderborn University
Duration: 04.2023 - 04.2026
Total project volume: 3.16 million euros
Project volume of Paderborn University: 1.86 million euros
Funded by: Ministry for Economic Affairs, Innovation, Digitalization and Energy of the State of North Rhine-Westphalia
In the project "Climate neutral Business in Ostwestfalen-Lippe (Climate bOWL)", scientists from the University of Paderborn, represented by the Software Innovation Campus Paderborn and the Department of Lightweight Construction in Automobiles, are working together with the University of Bielefeld and the industry partners Miele, GEA, Phoenix Contact as well as NTT Data on an interdisciplinary basis to support companies in achieving climate protection goals. On the way to climate neutrality, a holistic approach is needed that enables the aggregation and assessment of greenhouse gas emissions (GHG) in a resource-efficient way, as well as the identification and prioritisation of GHG reduction measures. The Climate bOWL project addresses this challenge by developing a digital assistance system that supports companies in standardised and automated data collection and in identifying efficiency potentials. The project is funded by the Ministry of Economic Affairs, Innovation, Digitalisation and Energy of the state of North Rhine-Westphalia with 1,86 million euros as part of the "it's OWL“ cluster since April 2022; the total volume of the project is 3,16 million euros.
Project management: Dr.-Ing. Florian Schlosser, Software Innovation Campus Paderborn
Duration: 03.2022 - 08.2025
Total project volume: 2.35 million euros
Project volume of Paderborn University: 367,793 euros
Funded by: Ministry of Culture and Science of the State of North Rhine-Westphalia
The postgraduate research training group NERD (North Rhine-Westphalian Experts on Research in Digitalization) is funding your researchers in IT-security at universities and universities of applied sciences in North Rhine-Westphalia to promote research in the area of Human Centered Systems Security. Young researchers from different locations and principle investigators are (often for the first time) cooperating on shared projects. Heart of the training group is the research in groups of two across universities.
Project management: Ruhr University Bochum
Duration: 07.2022 - 06.2025
Total project volume: 1.733 million euros
Project volume of Paderborn University: 637,907 euros
Funded by: Federal Ministry of Education and Research (BMBF)
TLS (Transport Layer Security) is the most important security standard used in practice - TLS ensures the authenticity, integrity and confidentiality of private and business communication, guarantees data protection, and secures complex IT systems. While the theoretical security of TLS has been well studied and understood, implementation errors repeatedly lead to serious security gaps that could be exploited for attacks (e.g., HeartBleed, POODLE, ROBOT, DROWN, RACCOON, ...). While the first implementation errors could still easily be found manually, newer attacks use complex interactions of several TLS versions and numerous TLS features.
To ensure the security of such complex cryptographic implementations, developing methods for automated testing of all possible combinations of these features at all levels is necessary. The proposed project aims to develop such automated test methods and implement them practically in a test suite. Our test suite can thus be used by developers, integrators, operators, and test institutes to evaluate TLS implementations regarding security and interoperability. The open-source framework TLS-Attacker, developed jointly by the University of Paderborn and the Ruhr University Bochum, is the basis for the test suite. Requirements are contributed by the company partners, who critically monitor the development. Integration into a software testing framework is planned so that our test suite can be used for compliance and security tests of existing implementations and accompanying the development of new implementations.
Project management: Juraj Somorovsky
Project partners: Hackmanit GmbH, InnoZent OWL e.V., Ruhr University Bochum
Duration: July 2022 - December 2024
Total funding volume: 1,2 million euros
Funding volume of Paderborn University: 164.536 euros
Funded by: Ministry of Economic Affairs, Industry, Cimate Action and Energy of the State of North Rhine-Westphalia
Efforts towards digitalization in small and medium-sized enterprises (SMEs) often turn out to be a challenge because these companies lack the necessary competencies and tools. In particular, holistic implementations cause major obstacles. Therefore, the project "I4.0AutoServ" aims to create a comprehensive solution for production, especially for SMEs, based on data-driven value-based services (VBS). These VBS are intended to increase the availability and reliability of plants and machines. The goal is to achieve a high degree of automation in the generation, provision and application of data-based VBS. Thereby the need for manual intervention should be eliminated as far as possible. Furthermore, a high scalability is to be achieved in order to enable a broad application in the production of various companies.
The Chair of Dynamics and Mechatronics is contributing its own expertise to this project, including the topics of condition monitoring and predictive maintenance. The primary contribution is the development of a broadly applicable toolbox for the generation and provision of trained models for diagnosis and prognosis. The focus is to achieve a high degree of automation. The contribution thus forms the core of the data-based VBS, since these are enriched by machine learning methods.
Project management: Prof. Dr.-Ing. habil. Walter Sextro, Paderborn University
Project partner: Weidmüller Interface GmbH & Co. KG, University of Bielefeld, Fraunhofer IOSB-INA, Lenze SE, Friedrich Remmert GmbH, PerFact Innovation GmbH & Co. KG
Duration: 2024-2027
Total project volume (University): 350,140 euros
Funded by: German Research Foundation (DFG)
In 2014, we proposed the amoebot model for the rigorous algorithmic study of programmable matter. Since then, the model has gained considerable momentum, but it only allows slow shape transformations. Recently, we proposed a reconfigurable circuit extension of the amoebot model in order to quickly disseminate information in an amoebot structure and showed that various fundamental computational tasks like leader election or compass alignment can be solved significantly faster than in the original model. Based on this extension, we intend to develop highly scalable distributed algorithms for shape transformations, the detection of errors in shapes, and for a best possible matching of a given shape with some target shape. Such highly scalable algorithms are vital in order to make our research results sufficiently attractive for a technical realization.
Projektleitung: Prof. Dr. Christian Scheideler,??????? Universit?t Paderborn
Duration: 2023 - 2026
Total project volume: 832,488 euros
Project volume of the University: 252,168 euros
Funded by: German Research Foundation
The objective of the proposed research project is the development of adaptive tracking control techniques for coupled multibody systems with rigid and flexible components. The rigid components are described by nonlinear differential-algebraic equations. The flexible components are described by linear partial differential equations in one spatial dimension for a start. In the course of the project also multi-dimensional flexible subsystems will be considered, which are discretized by suitable methods. In each case, the models exhibit a port-Hamiltonian structure, and hence the physical properties (in particular, the power balance) can be captured in a mathematically rigorous way. A distinctive feature of port-Hamiltonian systems is that they are intrinsically modular, because arbitrary subsystems can be coupled via their ports. Despite these advantages, the port-Hamiltonian approach to modeling gets only little recognition in mechanics. Therefore, systematic methods for tracking control of such coupled multibody systems are still missing. In this project, first, a structural characterization of important system theoretic properties, such as input-output configurations, possible delays and the stability of the internal dynamics, will be conducted on the basis of physical considerations. Building on that, control techniques will be developed which guarantee the evolution of the tracking error within a prescribed margin. To this end, methods from funnel control and inversion-based feedforward control are combined, which led to far-reaching results for rigid multibody systems described by differential-algebraic equations in the first phase of the project. Now, in the second phase of the project, the feedforward controller will be designed for an approximation of the flexible components via coarse discretizations and combined with a funnel controller for the exact model. The latter is intended to compensate the approximation errors. Exploiting the modular construction of port-Hamiltonian systems, the possibility of a recursive feedforward control design will be investigated. For the applicability of funnel control, approaches which establish a functional relation between the original output and an alternative output that is co-located to the input will be considered. The performance and implementability of the developed methods will be constantly verified by means of selected experiments. The experiments support the selection of technically suitable controller design parameters and thus lead to a feedback between theory and practice.
Project management: Jun. Prof. Thomas Berger der Universit?t Paderborn
Project partners: Prof. Dr. Timo Reis (Technische Universit?t Ilmenau), Prof. Dr.-Ing Robert Seifried (Technische Universit?t Hamburg)
Duration: 01.10.2022 - 30.09.2024
Total project volume: 2.5 million euros
Project volume of the University: 641,108 euros
Funded by: Bundesministerium für Bildung und Forschung
Initial situation
In manufacturing, data is increasingly advancing to become a strategic resource. Data makes it possible to create digital products and services and thus realize new value propositions. Increasingly, data is being exchanged across company boundaries. This results in so-called data ecosystems in which diverse players contribute their data to create benefits for themselves and the entire ecosystem. GAIA-X makes a significant contribution by enabling companies, for example, to make data available, merge and share it securely and confidently using standardized, interoperable interfaces. However, for manufacturing companies and especially SMEs, a number of challenges arise in the context of GAIA-X, which can be technical, organizational or human. Companies need to be empowered to identify and evaluate GAIA-X opportunities, design promising applications, and transform themselves into GAIA-X providers.
Objective:
The URANOS-X research project provides a significant contribution to the empowerment of manufacturing companies for the use of GAIA-X. To date, there are only a limited number of leaders who can provide outstanding knowledge about GAIA-X and its functions. At the same time, there is a great need for knowledge among those stakeholders for whom entry into GAIA-X opens up promising business options. Other social groups, such as trade unions, also need to be informed about potentials and risks.
The overarching goal of the research project is to develop requirements, transferable solution patterns and methods for enabling manufacturing companies for GAIA-X. This requires a development toolkit. This requires a development kit that integrates the aforementioned stakeholders and delivers custom-fit solutions. It should be based on the knowledge of the leaders and enable the so-called learners and listeners to get started with GAIA-X.
Project management: Prof. Roman Dumitrescu of the Paderborn University
Project organiser: Karlsruher Institut für Technologie
Project partners: Fraunhofer IEM, RWTH Aachen, OFFIS
Duration: 01.10.2022 - 30.09.2024
Total project volume: 3 million euros
Project volume of the University: 277,600 euros
Funded by: Bundesministerium für Bildung und Forschung
Initial situation
The manufacturing of mechatronic products, such as semiconductors, is characterized by significant energy consumption, the use of limited and sometimes critical raw materials, and demanding manufacturing conditions. These aspects lead not only to environmental impacts, but also to resource scarcity and economic uncertainty. In view of global environmental and sustainability requirements, it is essential to find solutions that address these challenges and lead to more responsible manufacturing of such products.
Objective:
The main objective of the 'ZirkuPro' project is to develop a comprehensive methodology for holistic circular product creation in the context of Intelligent Technical Systems. The circular economy approach is applied as a guiding principle. This means that waste is avoided by returning products to the economic cycle through reuse, repair or recycling. The special focus here is on electronics, which are an essential component in many of these technical systems. Due to its complexity, the use of different materials (including critical raw materials such as rare earths), the often underestimated CO2 emissions and the changing regulatory requirements, electronics production is a key area for innovation towards sustainability. 'ZirkuPro' aims to develop a systematic approach that takes into account the entire lifecycle of products - from initial material sourcing through manufacturing to recycling or disposal. By succeeding in establishing circular product creation in this area, the project will not only help reduce environmental impacts, but also ensure the availability of resources in the long term and increase the sustainability of mechatronic product manufacturing.
Project management: Prof. Roman Dumitrescu of the Paderborn University
Project partners: contech, Fraunhofer IEM, Fraunhofer IZM, Diebold Nixdorf, Miele, Wago
Duration: 15.04.2023 - 14.10.2025
Total project volume: 1.84 million euros
Project volume of Paderborn University: 475,000 euro ?????s
Funded by: it?s owl
Initial situation
How can companies ensure that their products remain successful in the future? This question is the focus of product management, a discipline that deals with the conception, control and monitoring of products or services within a company. Experts often rely on their intuition, as relevant information is often spread across different departments. The "Data-based Product Management" project is dedicated to developing approaches for strengthening product management with the help of data optimization.
Objective:
The aim of this project is to support the companies Diebold Nixdorf, DMG Mori, Isringhausen and Schmitz Cargobull in managing traditional product management tasks, such as the design of new product features, more efficiently and successfully with the help of modern data analysis methods. This will involve actively using information from a wide range of sources such as operational data, internal information from the marketing and sales departments, and external sources such as social media. Throughout the process, the companies are supported by research partners Fraunhofer IEM and Heinz Nixdorf Institute.
Project management: Prof. Roman Dumitrescu der Universit?t Paderborn
Project partners: DMG MORI, Fraunhofer IEM, ISRI, Diebold Nixdorf, Schmitz Cargobul, Wago
Duration: Juni 2022 - Februar 2025
Total project volume: 3.4 million euros
Project volume of the University: 875,000 euros
Funded by: Ministry of Economic Affairs, Industry, Climate Protection and Energy of the State of NRW
Initial situation
The aviation industry faces a challenging task in light of the pressing need for decarbonization. With increasing awareness of the impact of aviation on the environment, it has become imperative to find innovative solutions to reduce CO2 emissions and minimize noise levels. One of the key challenges lies in optimizing overall flight operations, with secondary activities such as aircraft taxiing on the apron playing a crucial role. In this context, the use of alternative engines is a promising option to reduce environmental impact and operating costs.
Objective:
The "FastGate" project has set itself the ambitious goal of significantly improving the efficiency and environmental compatibility of flight operations at commercial airports. The main objectives of the project are to drastically reduce aircraft idle time on the apron, cut operating costs and minimize CO2 emissions and noise levels. This is to be achieved by automating processes on the airport apron. A key starting point is the automation of electric taxiing of aircraft, enabling more efficient and faster handling processes.
Another significant goal of FastGate is the implementation of innovative technologies such as automated passenger boarding bridges and green propulsion systems on the landing gear of commercial aircraft. These measures open up new opportunities for process optimization and more efficient operations at commercial airports. The project covers the entire value chain from initial development to validation of the implemented solutions.
Project management: Prof. Roman Dumitrescu of the Paderborn University
Project partners: AEROSOFT, Fraunhofer IEM, Airport Paderborn Lippstadt
Duration: 2024 bis 2027
Total project volume: 241,775 euros
Project volume of the University: 241.775 euros
Funded by: German Research Foundation
The objective of the proposed research project is the development, numerical implementation and analysis of the novel decentralized control concept Funnel Formation Control (FFC) for multi-agent systems. This method is able to guarantee the evolution of the inter-agent distances within a prescribed range. Additionally, it achieves collision avoidance and velocity synchronization with prescribed performance in the context of so-called “flocking”. As a particular challenge, we consider heterogeneous agents with nonlinear dynamics. Furthermore, the dynamics and initial states of the agents are not assumed to be known, apart from some structural information such as the order of the underlying differential equation. To realize these ambitious goals we utilize methods from funnel control, which is a current research area in control engineering and mathematical systems theory, and it successfully balances theory and application. The funnel controller is able to guarantee the evolution of the output variables within a prespecified margin. This allows for a controller design independent of the specific system parameters, which therefore exhibits inherent robustness properties. The desired control strategy consists of three components: 1.) In the first formation control part the desired position of each agent in the formation is constructed geometrically and used as a reference signal in a recent funnel control method. The FFC constructed in this way achieves that each agent attains its desired position with prescribed performance. Additionally, an input filter is used to avoid the measurements of velocities. 2.) In a second step the FFC is expanded by an additional controller component, which achieves collision avoidance. This component is again based on funnel control techniques. For this combination, feasibility and robustness are to be proved rigorously. 3.) In the last step the collision-avoiding FFC is combined with a so-called edge-wise funnel coupling law, which achieves synchronization of the velocities of the agents with prescribed performance. In this way it is expected to achieve the ultimate objective of flocking with prescribed behavior of the agents. As a proof of concept, the application to satellite formation flight is considered, where each satellite is described by a nonlinear differential equation of second order. In the course of this, the performance and implementability of the developed control methods is to be constantly verified by means of simulation studies. This supports the selection of suitable controller design parameters and thus ensures a continuous feedback between theory and numerical practice.
Project management: Jun. Prof. Thomas Berger of the Paderborn University
Duration: 01.06.2023 - 31.05.2026
Total project volume: 4.98 million euros
Project volume of the University: 379,344 euros
Funded by: Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen, Projekttr?ger Jülich, it‘s OWL
Initial situation
In today's world, developers often lack appropriate methods for designing and creating sustainable systems. Decision-making in the product development process, especially with regard to sustainable options, is often characterized by uncertainty. The question of whether, for example, an electric motor should be encapsulated to minimize heat loss, or whether encapsulation should be dispensed with to facilitate recycling, raises important ecological and economic questions. In addition, it remains unclear which solution will have the greatest CO2-saving effect. Against this backdrop, the Sustainable Lifecycle Engineering (SLE) project was created with the aim of equipping developers and product managers with the necessary tools to take sustainability aspects into account in the early stages of the engineering process.
Objective:
The main objective of the Sustainable Lifecycle Engineering (SLE) project is to enable developers and product managers to systematically incorporate sustainability aspects into their decision-making while designing complex systems. This will be achieved by developing and implementing methods and approaches that build on Model-Based Systems Engineering (MBSE). Existing MBSE methods will be extended to include the dimension of sustainability, integrating consideration of environmental, social, and economic considerations into the development process. The project's partnership promises interdisciplinary collaboration to bridge the gap between technological innovation and sustainability requirements. Ultimately, the SLE project strives to revolutionize the design of products and systems by focusing on sustainability from the outset, contributing to greener and more future-oriented development.
Project management: Prof. Roman Dumitrescu of the Paderborn University
Project partners: Fraunhofer IEM, Diebold Nixdorf, HARTING, Miele, 360直播吧mens, Wago, Wuppertal Institut
Duration: 03.2024 - 03.2027
Total project volume (University): 350,000 euros
Funded by: German Research Foundation (DFG)
In 2014, we proposed the amoebot model for the rigorous algorithmic study of programmable matter. Since then, the model has gained considerable momentum, but it only allows slow shape transformations. Recently, we proposed a reconfigurable circuit extension of the amoebot model in order to quickly disseminate information in an amoebot structure and showed that various fundamental computational tasks like leader election or compass alignment can be solved significantly faster than in the original model. Based on this extension, we intend to develop highly scalable distributed algorithms for shape transformations, the detection of errors in shapes, and for a best possible matching of a given shape with some target shape. Such highly scalable algorithms are vital in order to make our research results sufficiently attractive for a technical realization.
Project management: Prof. Dr. Christian Scheideler, Paderborn University