Profilbereich "Intelligente Technische Systeme"
Intelligente technische Systeme sind durch das Zusammenspiel von Algorithmen, Informationstechnik, Mechanik, Sensorik und Aktorik gekennzeichnet. Diese Komponenten bzw. Teilsysteme sind miteinander vernetzt und k?nnen auf verschiedenen r?umlichen und zeitlichen Skalen operieren. Beispiele für intelligente technische Systeme sind Smart Grids, die digitale Fabrik, Erkl?rbare KI, Smart Cities, autonome Fahrzeuge, autonome Roboter usw.
Eine Integration dieser Systeme in einen Anwendungskontext bedeutet hohe Anforderungen im Hinblick auf Sicherheit, Robustheit, Lernf?higkeit, Ressourceneffizienz, Datenschutz u.a. Aufgrund der Komplexit?t und Heterogenit?t der Systeme sind diese Anforderungen nicht leicht zu erfüllen. ?berdies ist ein interdisziplin?rer Forschungsansatz unbedingt erforderlich, weil sich das Verhalten des Gesamtsystems erst aus dem komplexen Zusammenwirken der Komponenten, der Interaktion mit den Nutzer:innen und der Besonderheiten des Anwendung ergibt.
Die Forschungsarbeiten im Profilbereich intelligente technische Systeme erfolgen in enger Kooperation von Informatik, Ingenieurwissenschaften, Mathematik, Wirtschaftswissenschaften, aber auch mit Kulturwissenschaften, wenn es um den Einsatz der Systeme in sozialen Kontexten geht. 360直播吧 befassen sich mit Analyse und Entwurf (Modellbildung, Simulation, Verifikation, Methodenentwicklung) von intelligenten technischen Systemen und schlie?en sozio?konomische und kulturwissenschaftliche Aspekte (Gesch?ftsmodelle, Verhaltens?konomie, Technikethik, Interaktionsdesign) ein.
Gro?e Verbundprojekte
Laufzeit: 2018 bis 2024
F?rdervolumen gesamt: 12 Mio. Euro
F?rdervolumen der Universit?t: 1.522.000 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft
Das Schwerpunktprogramm SPP2111 befasst sich mit der nanophotonischen / nanoelektronischen Technologie aus Systemsicht, indem grundlegende photonisch-elektronische Signalverarbeitungskonzepte und neuartige integrierte Systemarchitekturen unter Verwendung überwiegend photonischer Verarbeitung untersucht werden.
Wir haben drei Kernbereiche für die Grundlagenforschung identifiziert, die sich auf Folgendes beziehen: Ultrabreitbandsignalverarbeitung, Frequenzsynthese sowie Analog-Digital-Wandlung durch Femto-Sekunden-Pulslaser und optische / THz-Erfassung. Die Untersuchung und das Design nanophotonischer / nanoelektronischer Systeme ist eine sehr komplexe Aufgabe und erfordert eine hoch interdisziplin?re Forschung, an der viele Forscher aus Deutschland aus den Bereichen Halbleiterphysik, Elektronik- und Photoniksystemdesign, Kommunikationstechnik, Mikrosystemtechnik und Sensoren beteiligt sind.
Projektkoordinator: Prof. Dr. J. Christoph Scheytt, Heinz Nixdorf Institut der Universit?t Paderborn
Projektbeteiligte: Prof. Dr.-Ing. Manfred Berroth (Universit?t Stuttgart), Professor Dr.-Ing. Stephan Pachnicke (Christian-Albrechts Universit?t zu Kiel), Professor Dr. Jeremy Witzens, Ph.D. (RWTH AACHEN), Professor Dr.-Ing. Christoph Scheytt (Universit?t Paderborn), Professor Dr. Thomas Schneider (TU Darmstadt), Professor Dr. Ronald Freund (TU Berlin), Professor Dr.-Ing. Norbert Hanik (Technische Universit?t München), Professor Dr.-Ing. Lars Zimmermann (TU Berlin), Professor Dr.-Ing. Dietmar Kissinger (Universit?t Ulm), Professor Dr.-Ing. Robert Weigel (Friedrich-Alexander-Universit?t Erlangen-Nürnberg), Professor Dr.-Ing. Frank Ellinger (TU Dresden), Professor Dr.-Ing. Dirk Plettemeier (TU Dresden), Professor Dr.-Ing. Sebastian Randel (Karlsruher Institut für Technologie), Professor Dr.-Ing. Martin Schell (Fraunhofer-Institut für Nachrichtentechnik), Professor Dr.-Ing. Christian Koos (Karlsruher Institut für Technologie), Professor Dr.-Ing. Thomas Zwick (Karlsruher Institut für Technologie), Professor Dr.-Ing. Franz Xaver K?rtner (Universit?t Hamburg)
Laufzeit: 2020 - 202
F?rdervolumen gesamt: 29,6 Mio. Euro
F?rdervolumen der Universit?t: 1,595 Mio Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Für Zukunftsaufgaben wie das autonome Fahren oder Industrie 4.0 müssen immer gr??ere Mengen an Daten von einer steigenden Anzahl Sensoren mit Hilfe komplexer Algorithmen und künstlicher Intelligenz (KI) in kürzester Zeit analysiert werden. Die entsprechenden Prozessoren müssen aber nicht nur bei der Rechenleistung, sondern auch hinsichtlich Energieeffizienz, Zuverl?ssigkeit, Robustheit und Sicherheit hohe Anforderungen erfüllen, die über aktuelle M?glichkeiten weit hinausgehen. Die ZuSE-Projekte des BMBF sollen den dringenden Bedarf der Anwenderbranchen an zukunftsf?higen, vertrauenswürdigen Prozessoren decken, die auf ihre spezifischen Aufgaben zugeschnitten und hoch performant sind.
Das Vorhaben Scale4Edge erforscht, wie Entwicklungszeit und -kosten anwendungsspezifischer Edge-Prozessoren signifikant reduziert werden k?nnen. Solche Prozessoren führen meist mobil und nahe an Sensoren, an der Schnittstelle von der realen zur virtuellen Welt, entscheidende erste Berechnungen aus. 360直播吧 müssen deshalb nicht nur besonders zuverl?ssig, performant und robust, sondern auch energieeffizient arbeiten. Darüber hinaus müssen sie ein hohes Ma? an Vertrauenswürdigkeit bieten. Mit der entstehenden skalierbaren und flexibel erweiterbaren Entwicklungsplattform auf Basis des lizenzfreien, quelloffenen RISC-V-Befehlssatzarchitektur k?nnen individuelle Prozessoren mit diesen Eigenschaften effizient und kostengünstig entwickelt werden.
Projektleitung: Dr. Wolfgang Müller, Heinz Nixdorf Institut der Universit?t Paderborn
Projektpartner: Infineon Technologies AG, oncept engineering GmbH ASIC- und Softwaretechnologie, TU Kaiserslautern, AbsInt Angewandte Informatik GmbH, Robert Bosch GmbH, Eberhard-Karls-Universit?t Tübingen, OFFIS e.V., TU München, Albert-Ludwigs-Universit?t Freiburg, IHP GmbH, MINRES GmbH, TU Dresden, ARQUIMEA Deutschland, SYSGO GmbH, TU Darmstadt, EPOS GmbH, Universit?t Bremen, FZI Forschungszentrum Informatik
Laufzeit: 2017 - 2023
F?rdervolumen gesamt: 3,2 Mio. Euro
F?rdervolumen der Universit?t: 1,7 Mio Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft
Verteilte akustische Signalverarbeitung über funkbasierte Sensornetzwerke
Das Projekt "Distributed Acoustic Signal Processing over Wireless Sensor Networks" erforscht Signalverarbeitungs- und Kommunikationsaspekte akustischer Sensornetze. Ein solches Sensornetz besteht aus Knoten mit Mikrophonen (ggf. auch Lautsprechern) und kommuniziert mittels drahtloser ?bertragungstechniken. Das Sensornetz ist typischerweise über ein oder mehrere Gateways mit dem Internet verbunden. Ein solches Netz führt akustische Anwendungen aus (etwa Sprechertrennung oder St?rger?uschunterdrückung). Ein naheliegender Ansatz w?re es, alle von den Sensorknoten gesammelten akustischen Daten zu dem Gateway zu transportieren und dort zu verarbeiten. Dies ist allerdings nicht unbedingt der bestm?gliche Ansatz (limitierende Datenrate, ggf. gro?e Latenz für gr??ere Datenmengen); zudem wird der m?gliche Vorteil verschenkt, die Daten bereits auf den Sensorknoten zu verarbeiten und damit die Datenmengen und die Latenz zu reduzieren. Wir betrachten daher Ans?tze, inspiriert durch Trends wie Microservices und Network Function Virtualization, bei denen die akustische Signalverarbeitung in einzelne Bl?cke aufgebrochen und auf die einzelnen Knoten verteilt werden kann. In diesem Folgeprojekt beabsichtigen wir, unsere Arbeiten sowohl zur verteilten akustischen Signalverarbeitung wie auch zur Entwicklung eines Frameworks zur automatisierten Verteilung solcher Bl?cke in ein Netz weiterzuführen. Im Einzelnen betrachten wir Hardware-Aspekte (insbesondere die Realisierung von full-duplex Audio) und die M?glichkeiten, solche Hardware für die Synchronisation in zeitbasierten MAC-Protokollen oder zur Sch?tzung akustischen Umlaufzeiten (round trip times) zu nutzen. Dies erlaubt uns, die r?umliche Anordnung des Sensornetzes zu sch?tzen und es geeignet zu kalibrieren, sowohl in statischen als auch in dynamischen Umgebungen. Aufbauend auf Information über die akustische Nützlichkeit (utility) einzelner Knoten werden wir das Problem der Quellenauswahl (Signale welcher Mikrofone sollten einbezogen werden?) unter akustischen wie auch unter Netzaspekten bearbeiten. Eine Schlüsselfrage wird weiter sein, wie wir solche Netzaspekte in dynamischen Szenarien beherrschen k?nnen. Dynamik entsteht dabei insbesondere durch Bewegung von Ger?ten und der Umgebung; solche Bewegungen k?nnen unkontrolliert oder kontrolliert (etwas bei robotergestützten Sensorknoten) sein. Unsere Arbeiten werden in ein gemeinsames Testbed münden, das die wesentlichen Funktionen integriert und eine Experimentalumgebung zu praktischen Erprobung algorithmischer Ideen sein wird.
Projektleitung: Dr.-Ing. J?rg Schmalenstr?er, Universit?t Paderborn
Koordinierungsprojekt
Wir sind tagt?glich von einer Vielzahl von Ger?uschen und anderen akustischen Ereignissen umgeben, und doch k?nnen wir uns mühelos in einer solchen Umgebung unterhalten, und die wahrgenommenen akustischen Eindrücke geben uns eine Vorstellung darüber, in welcher Umgebung wir uns gerade befinden. Ein technisches System mit ?hnlichen F?higkeiten h?tte vielf?ltige Anwendungen, beispielsweise im Bereich des umgebungsgestützten Lebens (Ambient Assisted Living), für Freisprechkommunikationssysteme oder für ?berwachungssysteme. Aufgrund der Allgegenwart von Funkkommunikationssystemen und den sinkenden Kosten für Mikrofone und Computer sind die technischen Voraussetzungen für solche intelligente Systeme gegeben - jedoch liegt der Engpass in der Leistungsf?higkeit der Algorithmen.
Diese Forschungsgruppe hat sich zum Ziel gesetzt, die akustische Signalverarbeitung und Klassifikation auf akustischen Sensornetzen intelligenter zu machen und damit besser an den Benutzer anzupassen. Die Verfahren sollen mit variierenden akustischen Umgebungsbedingungen zurechtkommen, unabh?ngiger vom Vorhandensein von passenden annotierten Trainingsdaten sein, und gleichzeitig dem Benutzer gegenüber vertrauenswürdig sein und die Privatsph?re respektieren. Diese Arbeiten werden den Weg ebnen für eine neue Klasse von Anwendungen, die fortschrittliche akustische Signalverarbeitung mit semantischen Analyse der Audiodaten verknüpft. Die Projektziele sollen dadurch erreicht werden, dass ein dreistufiger Ansatz gew?hlt wird: auf der ersten, untersten Ebene der Verarbeitung werden Funkkommunikations- und Synchronisationsaspekte behandelt, die zweite, mittlere Ebene ist der Signalextraktion und -verbesserung gewidment, w?hrend die dritte, oberste Ebene zum Ziel hat, die Signale zu klassifizieren und zu interpretieren. Dabei werden Verfahren der mehrkanaligen Signalverarbeitung und des maschinellen Lernens miteinander verknüpft. Auf diese Weise wird ein Rahmenwerk entstehen für die Nutzung akustischer Sensornetze in einer Vielzahl von neuen Anwendungen.
Projektleitung: Prof. Dr. Reinhold H?b-Umbach, Universit?t Paderborn
Audioklassifikation über Sensornetze bei Trainingsdaten mit geringer ?berwachung
Ein grunds?tzliches Problem für viele maschinelle Lernverfahren ist eine Diskrepanz zwischen den Trainingsdaten und den Testdaten in einer sp?teren Anwendung, welche zu einem signifikanten Einbruch der Klassifikationsrate führen kann. Bei der akustische Ereignisdetektion und Szenenklassifikation in akustischen Sensornetzen tritt dieses Problem versch?rft auf, weil es eine sehr gro?e Zahl m?glicher Ger?usche gibt und weil solche Netze in ganz unterschiedlichen geometrischen Konfigurationen und Umgebungen eingesetzt werden k?nnen. Aus diesem Grund werden die existierenden Datenbasen zur akustischen Ereignis- und Szenenklassifikation praktisch nie perfekt zu einer neuen Anwendung in einem akustischen Sensornetz passen.Das Hauptziel dieses Projektes ist es daher, Methoden zu entwickeln, die es erm?glichen, vorhandene Datenbasen trotz dieser Diskrepanz für konkrete Audioklassifikationsaufgaben in einem akustischen Sensornetz verwendbar zu machen. Wir nehmen an, dass schwach, d.h. nur mit der Ereignisklasse, nicht jedoch mit Zeitstempeln annotierte Daten von einer anderen Dom?ne vorhanden sind, und dass nichtannotierte Daten von der Zieldom?ne vorliegen. Es werden nun Verfahren entwickelt, um aus einer schwachen Annotation eine starke Annotation zu berechnen, in der zus?tzlich Anfangs- und Endzeiten von akustischen Ereignissen annotiert sind, um dom?neninvariante Merkmale zu berechnen, sowie Verfahren, um eine Dom?nenadaption durchzuführen, um auf diese Weise Unterschiede zwischen Trainingsdaten und Testszenario zu überwinden. Wir untersuchen dabei auch eine Adaption zum Testzeitpunkt, um sich an ver?nderte akustische Umgebungen und Sensorkonfigurationen anzupassen. Dabei sollen vor allem tiefe generative neuronale Modelle zum Einsatz kommen. Geeignete Netzstrukturen und Zielfunktionen sind zu enwickeln, um die verschiedenen Einflussfaktoren auf die beobachtete Signalform voneinander zu trennen, insbesondere die von dem akustischen Ereignis hervorgerufene Variation von der durch die Umgebung hervorgerufenen Variation des Signals. Weiterhin werden wir Verfahren entwickeln, um ungew?hnliche akustische Ereignisse erkennen zu k?nnen, denn diese k?nnen für eine konkrete Anwendung von besonderer Bedeutung sein.
Projektleitung: Prof. Dr. Reinhold H?b-Umbach, Universit?t Paderborn
Projektpartner: Dr.-Ing. habil. Gerald Enzner und Prof. Dr.-Ing. Rainer Martin, Ruhr-Universit?t Bochum, Prof. Dr.-Ing. Walter Kellermann, Friedrich-Alexander Universit?t Erlangen-Nürnberg
Menschenzentrierte Nutzung von Cyber-Physical Systems in Industrie 4.0
Laufzeit: 2014 - 2022
F?rdervolumen gesamt: 4,7 Mio. Euro
F?rdervolumen der Universit?t: 2,82 Mio. Euro
Gef?rdert durch: Ministerium für Kultur und Wissenschaft des Landes NRW
Im Forschungskolleg "Gestaltung flexibler Arbeitswelten" wird erforscht, welche Auswirkungen Industrie 4.0 auf die Arbeitswelt und die Rolle des Menschen hat. Die Herausforderung liegt in der Entwicklung neuer, sozialer Infrastrukturen. Darin muss die weiterhin rasante technologische Entwicklung antizipiert und der Mensch über sein gesamtes Arbeitsleben im Fokus der Entwicklung gesehen werden. Dazu setzen Ingenieur*innen in der Zukunft Methoden und Werkzeuge ein, die es erm?glichen, Arbeit 4.0 als integralen Bestandteil in der Produktentstehung zu berücksichtigen. Die Integration in eine modellbasierte Produktentwicklung z?hlt zu den wissenschaftlichen Herausforderungen des Forschungskollegs. Dabei werden beispielsweise L?sungen für die menschzentrierte, lernf?rderliche Gestaltung von Assistenzsysteme in der Montage mechatronischer Produkte geschaffen.
Projektleitung: Prof. Dr. Eckhard Steffen, Paderborn Center for Advanced Studies (PACE) und Prof. Dr. Gregor Engels, Universit?t Paderborn
Projektpartner: weitere Lehrstühle im Paderborn Center for Advanced Studies (PACE), Universit?t Bielefeld, it's OWL, Technologieberatungsstelle DGB NRW e.V., IG Metall NRW, Innovationsnetzwer Energie Impuls OWL e.V., VDI
Laufzeit: November 2020 - Oktober 2025
F?rdervolumen gesamt: 10,7 Mio. Euro
F?rdervolumen der Universit?t: 743.000 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Mit der Technologie ?Künstliche Intelligenz“ (kurz: KI) werden weitreichende Potenziale und Chancen einer Transformation der industriellen Wertsch?pfung verbunden. Dabei wird KI nach wie vor als vorwiegend technische Option wahrgenommen. Ein Verst?ndnis von KI im Arbeitskontext als umfassende sozio-technische Herausforderung ist ansatzweise etabliert. Bis dato fehlt jedoch eine ganzheitlich aufgestellte und mittelstandsnah agierende Arbeitsforschung im Kontext KI, die L?sungs- und Anwendungswissen bereitstellt. Dieser Diskrepanz wird in diesem Projekt begegnet. Grundlage dafür ist ein umfassender Themenzugang durch die Verbindung von Mensch – Organisation – Technologie und ein l?sungs- und transferorientierter Fokus in der Umsetzung. Das Ziel ist ein regionales Kompetenzzentrum ?KI in der Arbeitswelt des industriellen Mittelstands“ (KIAM). Es soll als Anlaufstelle fungieren für Unternehmen und alle weiteren Akteure der industriellen Arbeitswelt.
Kompetenzmanagement, Mitarbeiterbeteiligung und Technologieakzeptanz
Künstliche Intelligenz wird die Arbeitswelt grundlegend ver?ndern: KI-Systeme unterstützen Arbeitsprozesse, übernehmen Aufgaben und schaffen neue Arbeitsfelder. Die Identifikation von Einsatzm?glichkeiten und die Entwicklung konkreter L?sungen stellen insbesondere kleine und mittlere Unternehmen vor Herausforderungen, wie beispielsweise fehlende Fachkr?fte oder unklare organisationale und technologische Voraussetzungen. Das Kompetenzzentrum KIAM führt Erkenntnisse der Arbeitsforschung in diesem Zukunftsfeld zusammen. Themenschwerpunkte sind beispielsweise Arbeitsplatzgestaltung, Kompetenzentwicklung und Change Management. In Leuchtturmprojekten entwickeln Forschungseinrichtungen und Unternehmen konkrete L?sungen, in denen KI-Technologien für unterschiedliche Anwendungsfelder verfügbar gemacht werden.
Transfer in den Mittelstand
Die Ergebnisse und Erfahrungen aus den Leuchtturmprojekten sollen für kleine und mittlere Unternehmen verfügbar gemacht werden. Dazu werden eine Informationsplattform aufgebaut, gute Beispiele aufbereitet sowie Veranstaltungen und 360直播吧s durchgeführt. In Weiterbildungen werden Besch?ftigte für den Einsatz von KI-Technologien qualifiziert. In Transferprojekten k?nnen Unternehmen in Kooperation mit einer Forschungseinrichtung neue KI-Technologien nutzen, um konkrete Herausforderungen in ihrem Betrieb zu l?sen. Dabei unterstützen Transferpartner des Kompetenzzentrums wie beispielsweise owl maschinenbau und die OstWestfalenLippe GmbH.
Projektleitung: Prof. Dr. Kirsten Thommes der Universit?t Paderborn
Erkl?rbarkeit von künstlicher Intelligenz (KI)
Laufzeit: 01.07.2021 bis 30.06.2025
F?rdervolumen gesamt: ca. 14 Mio. Euro
F?rdervolumen der Universit?t: 8,2 Mio. Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Wie k?nnen Menschen Entscheidungen von Maschinen nachvollziehen? Was sagen die algorithmischen Ans?tze aus? Wie kann künstliche Intelligenz (KI) begreifbar werden?
Oft setzen technische Erkl?rungen Wissen über die Funktionsweise von KI voraus und sind nur schwer nachvollziehbar. Im Sonderforschungsbereich/Transregio Constructing Explainability (Erkl?rbarkeit konstruieren) erarbeiten die Forschenden Wege, die Nutzer*innen in den Erkl?rprozess einzubinden.
Dafür untersucht das interdisziplin?re Forschungsteam die Prinzipien, Mechanismen und sozialen Praktiken des Erkl?rens und wie diese im Design von KI-Systemen berücksichtigt werden k?nnen. Das Ziel des Projektes ist es, Erkl?rprozesse verst?ndlich zu gestalten und verstehbare Assistenzsysteme zu schaffen.
Die Ko-Konstruktion von Erkl?rungen untersuchen insgesamt 21 Projektleiter*innen mit rund 30 wissenschaftlichen Mitarbeitenden aus Linguistik, Psychologie, Medienwissenschaft, Soziologie, Wirtschaftswissenschaft und Informatik der Universit?ten Bielefeld und Paderborn.
Projektleitung: Prof. Dr. Katharina Rohlfing, Universit?t Paderborn (Sprecherin); Prof. Dr. Philipp Cimiano, Universit?t Bielefeld (stellv. Sprecher)
Laufzeit: 01.08.2022 - 31.07.2026
F?rdervolumen gesamt: 16,40 Mio. Euro
F?rdervolumen der Universit?t: 5,5 Mio. Euro
Gef?rdert durch: Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
SAIL adressiert die n?chste Stufe der KI-Entwicklung, indem der gesamte Lebenszyklus von KI-Systemen und deren technologischen und gesellschaftlichen Auswirkungen in den Blick genommen werden. SAIL ist dementsprechend interdisziplin?r angelegt und bindet Wissenschaftler*innen aus den Kern-KI-F?chern, aus den Ingenieurwissenschaften sowie aus den Sozial- und Geisteswissenschaften ein. Das Forschungsprogramm umfasst inhaltlich Grundlagenforschung im Kernbereich der KI (?research pillars“) sowie zwei Anwendungsgebiete (?application domains“). In der Grundlagenforschung werden zum einen das Zusammenspiel von KI und menschlichen Partnern bei der Bewertung und Abstimmung von Fehlern und Zielen betrachtet. Au?erdem werden ausgereifte KI-Systeme analysiert, um deren m?glicherweise unerwünschten langfristigen Auswirkungen auf funktionaler, kognitiver und gesellschaftlicher Ebene zu modellieren, abzufedern und zu verhindern. Zuletzt wird der gesamte KI-Lebenszyklus im Hinblick auf Effizienz betrachtet, damit der praktische Einsatz von KI-Systemen mit m?glichst wenig Energie-, Zeit- und Speicherbedarf und geringer kognitiver Anstrengung beim menschlichen Partner erm?glicht wird.
Die Anwendungsgebiete von SAIL sind intelligente industrielle Arbeitsumgebungen und adaptive Assistenzsysteme für die Gesundheitsfürsorge.
Projektleitung: Prof. Dr. Axel-Cyrille Ngonga-Ngomo, Institut für Informatik der Universit?t Paderborn
Projektpartner: Wissenschaftler`*innen der Universit?t Paderborn (Prof. Dr. Katharina Rohlfing, Jun. Prof. Dr. Ilona Horwath, Prof. Dr. Eric Bodden, Prof. Dr. Reinhold H?b-Umbach, Jun. Prof. Dr. Sebastian Peitz, Prof. Dr. Marco Platzner, Prof. Dr. Ansgar Tr?chtler)
Individualisierte IT-Dienstleistungen in dynamischen M?rkten
Laufzeit: 01.07.2011 bis 30.06.2023
Projektvolumen gesamt (Universit?t): ca. 30 Mio. Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Die Vision des ?On-The-Fly Computing“ sind Services, die von individuell und automatisch konfigurierten und zur Ausführung gebrachten IT-Dienstleistungen auf M?rkten frei gehandelt und flexibel kombiniert werden k?nnen. Gleichzeitig zielt der SFB 901 auf die Organisation von M?rkten ab, deren Teilnehmer durch geeignetes unternehmerisches Handeln einen lebendigen Markt der Services aufrechterhalten. Mit dieser Vision schaut der SFB 901 weit in die Zukunft der IT-Entwicklung und -Nutzung, deren erste Wandlungen wir aber schon heute erleben.
Um zu erforschen, inwieweit diese Vision realisierbar ist, werden Methoden und Techniken entwickelt, die a) eine weitestgehend automatische Konfiguration, Ausführung und Adaption von IT-Dienstleistungen aus Services erm?glichen, b) auf M?rkten weltweit verfügbar sind, c) die Sicherung der Qualit?t der so erbrachten Dienstleistungen und den Schutz der Akteure in den M?rkten garantieren sowie d) die Organisation und die Weiterentwicklung dieser M?rkte und die für diese Aufgaben notwendige Interaktion zwischen den Akteuren unterstützen. Um diese Ziele zu erreichen, arbeiten Informatiker aus unterschiedlichen Disziplinen wie Softwaretechnik, Algorithmik, Rechnernetze, Systementwurf, Sicherheit und Kryptografie mit Wirtschaftswissenschaftlern zusammen, die ihre spezifische Expertise einbringen. So k?nnen die Organisation und Weiterentwicklung des Marktes vorangetrieben werden.
Projektleitung: Prof. Dr. Friedhelm Meyer auf der Heide, Heinz Nixdorf Institut der Universit?t Paderborn
Projektpartner: diverse Lehrstühle des Instituts für Informatik der Fakult?t für Elektrotechnik, Informatik und Mathematik der Universit?t Paderborn, diverse Lehrstühle der Departments 1, 3 und 4 der Fakult?t für Wirtschaftswissenschaften der Universit?t Paderborn, BaER-Lab Business and Economic Research Laboratory, C-LAB Cooperative Computing and Communication Laboratory, DaSCo Paderborn Institute for Data Science and Scientific Computing, IEM Fraunhofer-Institut für Entwurfstechnik Mechatronik, IFIM Institut für Industriemathematik, PC2 Paderborn Center for Parallel Computing, SI-Lab Software Innovation Lab sowie Weidmüller Interface GmbH & Co. KG und Diebold Nixdorf Systems GmbH
Laufzeit: 01.01.2024 – 31.12.2026
F?rdervolumen gesamt: 12.5 Mio Euro
F?rdervolumen der Universit?t: ca. 2 Mio Euro
Gef?rdert durch: Bundesministerium für Digitales und Verkehr (BMDV)
Eine aktuelle Herausforderung bei der Transformation des Verkehrssystems besteht darin, Individualit?t mit Effizienz und Nachhaltigkeit zu vereinen. In diesem Kontext spielen Automatisierung, autonomes Fahren, intelligente Verkehrsführung, digitale Konnektivit?t und vernetzte Mobilit?t eine zentrale Rolle. Das Ziel des Projekts ?enableATO“ ist die Umsetzung moderner Ideen für die automatisierte Schienenmobilit?t und deren Untersuchung anhand neuer schienenbasierter Mobilit?tskonzepte für l?ndliche R?ume. Im Fokus stehen dabei Technologien im Zusammenhang mit automatisiertem Fahren wie Wahrnehmung durch Sensoren, Zulassungsfragen, intelligente Wartung und die Demonstration der Technologien z. B. am MONOCAB – einer autonomen Einschienenbahn. Parallel dazu werden erste Fragen zur Akzeptanz bei Nutzerinnen und Nutzern erforscht und adressiert sowie der Wissenschaftsdialog gest?rkt. Dabei ist das in Minden am RailCampus OWL angesiedelte Vorhaben eingebettet in das Deutsche Zentrum Mobilit?t der Zukunft (DZM), welches an den vier Standorten Hamburg, Annaberg-Buchholz, Minden und Karlsruhe ein bundesweites Forschungsnetzwerk zur Mobilit?tsforschung aufspannt.
In dem Projekt werden seitens der Universit?t Paderborn drei Lehrstühle bzw. Fachgruppen eingebunden: der Lehrstuhl für Dynamik und Mechatronik (LDM) von Professor Dr.-Ing. habil. Walter Sextro, der Lehrstuhl für Datenmanagement im Maschinenbau (DMB) von Professorin Dr. Iryna Mozgova und das Fachgebiet Machine Learning and Optimisation (MaLeO) von Professorin Dr. Heike Trautmann. Die T?tigkeiten des LDM verfolgen das Ziel eine intelligente Instandhaltung von Schienenfahrzeugen umzusetzen, sodass eine h?here Betriebssicherheit, weniger Ausfallzeiten und insgesamte geringe Kosten erzielt werden. Die T?tigkeiten des DMB unterstützen die Entwicklung eines digitalen Zwillings für das automatisierte Instandhaltungsmanagement, indem eine semantische und maschinenlesbare Repr?sentation der im Projekt anfallenden Daten und Metadaten realisiert wird. Die T?tigkeiten des Fachgebiets MaLeO fokussieren sich darauf, verschiedene zueinander in Konkurrenz stehende Ziele gleichzeitig zu berücksichtigen. Beispiele dafür sind der Konflikt zwischen Energieeffizienz und Robustheit, wo verschiedene optimale Kompromisse situationsbedingt angepasst werden k?nnen, um auf sich ?ndernde Pr?ferenzen oder Umwelteinflüsse optimal reagieren zu k?nnen.
Projektleitung: Gesamtprojektleitung Prof. Dr. Stefan Witte, TH OWL
Teilprojektleitung TP 1 ?ATO-Enabler-Technologien“ Prof. Dr.-Ing. habil. Walter Sextro, Universit?t Paderborn
Projektpartner: Hochschule Bielefeld, Technische Hochschule Ostwestfalen-Lippe, Universit?t Bielefeld, Fraunhofer Institut für Entwurfstechnik und Mechatronik (IEM) und Fraunhofer Institutsteil für industrielle Automation (IOSB-INA), DB Systemtechnik GmbH, HARTING Stiftung & Co. KG, Pilz GmbH & Co. KG und W?lfel Engineering GmbH & Co. KG
Weitere Projekte
Laufzeit: 2019 - 2022
F?rdervolumen gesamt: 3,7 Mio. Euro
F?rdervolumen der Universit?t: 3,4 Mio. Euro
Gef?rdert durch: Europ?ischer Fonds für regionale Entwicklung (EFRE)
Das heutige Energieversorgungssystem zeichnet sich durch vernetzte, geografisch verteilte Struk-turen aus, die h?chsten Sicherheits- und Zuverl?ssigkeitsstandards genügen müssen. Die Trans-formation dieses Systems auf eine nachhaltige und durch erneuerbare Energien gepr?gte Struktur ist eine zentrale gesellschaftliche Herausforderung des 21. Jahrhunderts. Die inh?rente Volatilit?t erneuerbarer Energiequellen erfordert eine Abkehr von hierarchisch strukturierten Top-Down-Energienetzen hin zu flexiblen, sektorübergreifenden und intelligenten Energiesystemen mittels eines zellularen Ansatzes. Daher stellen im Zuge der Energiewende sog. Microgrids eine wichtige L?sungskomponente dar, um auch zukünftig eine sichere, saubere, effiziente und kostengünstige Energieversorgung zu gew?hrleisten. Mit dem Begriff Microgrid wird das Konzept eines lokalen Netzes bezeichnet, welches aus Energiequellen, -speichern und -verbrauchern verschiedener Sektoren besteht, und welches mit oder ohne externe Netzankopplung arbeitet. Durch diese Struktur entstehen vielf?ltige Flexibilisierungsoptionen im Betrieb. Hierdurch k?nnen beispielsweise der Eigenverbrauchsanteil regenerativ bereitgestellter Energie erh?ht und die am Netzanschlusspunkt ben?tigte Spitzenleistung reduziert werden.Durch die lokale Integration regenerativer Energien mittels Microgrids, beispielsweise innerhalb von Industrieunternehmen oder Wohnquartieren, werden die Verteil- und ?bertragungsnetze entlastet und der Bedarf für den kosten- sowie ressourcenintensiven Netzausbau gesenkt. Auch wird die Effizienz der Energieversorgung gesteigert, da der verlustreiche Transport über lange Distanzen vermieden und die Energie verst?rkt vor Ort erzeugt und verbraucht wird. Durch die lokale Speicherintegration k?nnen Microgrids darüber hinaus netzdienliche Leistungen innerhalb der Prim?r-, Sekund?r- und Terti?rregelung bereitstellen und im Notfall als sog. Inselnetze sogar autark operieren. Diese netzstabilisierenden Ma?nahmen k?nnen verst?rkt werden, wenn geographisch benachbarte Microgrids zu virtuellen Kraftwerken bzw. Gro?speichern gekoppelt werden. Die Potentiale von Microgrids werden weltweit bisher vor allem akademisch untersucht. Die industrielle Umsetzung ist allerdings mit hohen technischen und finanziellen Risiken behaftet, insbesondere für KMUs. Für den erfolgreichen Transfer in die Wirtschaft sind jedoch sowohl umfangreiche Praxis-Untersuchungen als auch die Ertüchtigung der Microgrid-Komponenten (z.B. Power-to-X Technologien) für den Feldeinsatz unerl?sslich. Damit NRW vom enormen Wertsch?pfungspotential dieses Technologiefeldes auf einem umk?mpfen Weltmarkt zukünftig profitieren kann, müssen F&E-Anstrengungen intensiviert und der Wissenstransfer in die Industrie verst?rkt werden. Zu diesem Zweck richtet das Kompetenzzentrum nachhaltige Energietechnik (KET) unter Federführung des Fachgebiets Leistungselektronik und Elektrische Antriebstechnik das ?Microgrid-Labor“ ein. Kernstück des Konzepts die Entwicklung sowie der Aufbau einer hoch-flexiblen, modularen Entwicklungs- und Validierungsplattform für die komponentenbezogene und systemische Microgrid-Forschung in NRW. Zum Aufbau des Labors sind Hochleistungs-Netzknoten zu entwickeln. Diese sind frei konfigurierbar und flexibel ansteuerbar. Durch geeignete Software bilden diese das Verhalten beliebiger Komponenten, z.B. von Batterien, Windkraftanlagen oder BHKWs, exakt nach. Die Netzknoten werden durch steuerbare Schalter in frei w?hlbaren Topologien zusammengeschlossen. Diese hard- & softwareseitige Rekonfiguration erlaubt die praxisnahe Forschung innerhalb lokaler Netze bis in den Megawatt-Bereich.
Projektleitung: Prof. Dr.-Ing. Joachim B?cker, Universit?t Paderborn
Projektpartner: weiteren KET Lehrstühle (EIM-NEK, MB-FVT, MB-TheT) der Universit?t Paderborn
Laufzeit: 01.09.2019 - 19.06.2022
Projektvolumen gesamt: 1,9 Mio. Euro
Projektvolumen der Universit?t: 414 543 Euro
Gef?rdert durch: Bundesministerium für Wirtschaft und Energie
RAKI entwickelt neuartige Verfahren um skalierbare nachvollziehbare Machine Learning-Verfahren mit ?humans in the loop“ zu entwickeln.
Im Fokus des Projekts steht die skalierbare KI-getriebene Optimierung der Konfiguration und des Betriebs von Industrieanlagen sowie der notwendigen Produktionslogistik.
Verteilte Implementierungen erm?glichen die Verarbeitung gro?er Datenmengen für die automatische Generierung von Erkl?rungen. Die Entwicklungs- und Anwendungspartner AI4BD und 360直播吧mens planen die Verwendung von wesentlichen Teilen des RAKI-Frameworks nach der Produktisierung in ihre Plattformen CBR und Mindsphere. Das Ergebnis von RAKI bildet die Grundlage für neuartige Datenprodukte wie KI-getriebene interaktive Konfigurationssoftware für Industrieanlagen, die eine skalierbare Entwicklung von Smart Services in der industriellen Produktion erm?glicht.
Projektleitung: Prof. Dr. Axel-Cyrille Ngonga Ngomo der Universit?t Paderborn
Projektpartner: AI4BD Deutschland GmbH, 360直播吧mens AG, Leipzig Universit?t
Laufzeit: 01.07.2020 bis 30.06.2024
F?rdervolumen gesamt (Universit?t): 1.591.507 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Im Zuge der Digitalisierung erfahren künstliche Intelligenz und maschinelles Lernen aktuell eine hohe Aufmerksamkeit seitens Wissenschaft und Industrie. In der Regelungstechnik, werden bereits datengetriebene Verfahren eingesetzt, jedoch vorwiegend als Alternative zur physikalischen Modellierung dynamischen Verhaltens bzw. zu fachspezifischen Methoden des Regelungs- und Steuerungsentwurfs oder in einer pragmatischen einfachen Kombination.
Das Ziel der Nachwuchsgruppe ?DART – Datengetriebene Methoden in der Regelungstechnik“ ist es daher, neuartige hybride Methoden für regelungstechnische Probleme zu entwickeln, indem die bew?hrten physikalisch motivierten Verfahren mit den modernen datengetriebenen Verfahren kombiniert werden und so die gr??tm?gliche Performanz beim Regelungsentwurf erzielt werden kann. Diese hybriden Ans?tze gehen weit über einfache, pragmatische Kombinationen hinaus, weil sie auf strukturell gut begründeten Kompositionen aus aufeinander zugeschnittenen Verfahren beruhen, die ihre Vorteile synergetisch vereinen. Dabei werden die typischen Entwurfsschritte wie die Modellierung und Parameteridentifikation des physikalischen Systems, der Beobachterentwurf, die Reglerauslegung sowie die Inbetriebnahme des Reglers adressiert. Dadurch sind wir in der Lage alle Aspekte der klassischen Regelungstechnik gesamthaft durch hybride Ans?tze mit datenbasierten Methoden zu erweitern.
Projektleitung: Dr.-Ing. Julia Timmermann, Heinz Nixdorf Institut der Universit?t Paderborn
Laufzeit: 2020 - 2022
F?rdervolumen gesamt: 1,4 Mio. Euro
F?rdervolumen der Universit?t: 500.000 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Das Forschungsprojekt DAIKIRI zielt auf die erstmalige Entwicklung und Verwendung von automatischen Verfahren für die Semantifizierung von industriellen Daten und die datengetriebene Diagnose von Industrieanlagen ab. Mit Hilfe dieser Verfahren sollen diagnostische selbsterkl?rende Smart-Services für Industriedaten entwickelt und mit Daten aus realen Anwendungsf?llen evaluiert werden. DAIKIRI wird daher KI-Verfahren entwickeln, die selbsterkl?rend sind und Ergebnisse von KI automatisch verbalisieren und damit transparent machen. Anwendern soll dadurch das Zustandekommen von Ergebnissen nachvollziehbar gemacht werden. Darauf basierende Entscheidungen k?nnen somit vertrauensvoll getroffen werden.
Projektleitung: Prof. Dr. Axel-Cyrille Ngonga Ngomo der Universit?t Paderborn
Projektpartner: USU Software AG, elevait GmbH & Co. KG, pmOne AG
Laufzeit: 2019 - 2022
F?rdervolumen gesamt: 1 Mio. Euro
F?rdervolumen der Universit?t: 482.000 Euro
Gef?rdert durch: Europ?ischer Fonds für regionale Entwicklung
Wie k?nnen autonome Fahrzeuge mit Elektroantrieb als Beispiele für komplexe cyber-physische Systeme schneller, kostengünstiger und ressourcenschonender entwickelt werden? Und wie l?sst sich die Sicherheit solcher Fahrzeuge auf der Stra?e erh?hen? Das Forschungsprojekt soll diese komplexe Fragestellung beantworten.
Bei der Entwicklung von Fahrzeugen sorgen Trends wie das automatisierte Fahren oder die Entwicklung alternativer Antriebe, wie zum Beispiel batteriebetriebene Fahrzeuge, für einen sprunghaften Anstieg der Anforderungen an die zugrunde liegenden Systeme. Bei der Entwicklung solcher Fahrzeuge geht es darum, eine Vielzahl an Zielgr??en wie Verbrauch, Reichweite und Fahrkomfort zu optimieren und die Sicherheit des Systems zu garantieren. Um die Entwicklungsprozesse für Hersteller und Zulieferer verl?sslich und ?konomisch zu gestalten und Entwicklungszeiten einhalten zu k?nnen, machen sich Forscher und Entwickler auf die Suche nach neuen Ans?tzen.
Im Projekt sollen daher intelligente, simulationsbasierte Verfahren entwickelt werden, die den Entwicklungs- und Testprozess komplexer Fahrzeuge verbessern, systematisieren und den Automatisierungsgrad erh?hen. Dazu werden die Auslegung und der Test enger miteinander verzahnt, um bereits in frühen Entwicklungsphasen einen hohen Qualit?tsgrad zu erreichen. Hierzu kommen neueste mathematische Methoden aus der Mehrzieloptimierung zum Einsatz, die einer der Kernkompetenzen des Instituts für Industriemathematik ist. So k?nnen miteinander konkurrierende Ziele wie Energieeffizienz, Komfort und Kosten gleichzeitig berücksichtigt und darüber hinaus die Sicherheit des Systems gew?hrleistet werden. Geplant ist, die neuen Verfahren in die Toolkette von dSPACE zu integrieren und anhand eines Beispiels aus der Fahrzeugentwicklung von e.GO zu evaluieren.
Projektleitung: Dr. Sebastian Peitz der Universit?t Paderborn
Projektpartner: Prof. Dr. Michael Dellnitz der Universit?t Paderborn, dSPACE, e.GO Mobile AG
Laufzeit: 01.01.2019 – 30.06.2022
F?rdervolumen gesamt (Universit?t): 944.132 Euro
Gef?rdert durch: BMBF (Initiative "Forschungslabore Mikroelektronik Deutschland" (ForLab))
Das FutureLab Power Electronics ist auf die Anwendungsforschung an neuen Leistungs-Halbleitern mit hoher Bandlücke ausgerichtet. Zu diesen sogenannten wide-band-gap- (WBG-) Halbleitern z?hlen vor allem Siliziumcarbid (SiC) und Galliumnitrid (GaN). Hierfür baut das Fachgebiet Leistungselektronik und elektrische Antriebe (LEA) an der Universit?t Paderborn eine neuartige Laborlandschaft auf, die von der WBG-Schaltungsentwicklung bis hin zum Dauertest entstehender prototypischer Gesamtger?te alle praktischen Entwicklungsschritte diverser Forschungsprojekte zukunftsgerichtet bedient. Im ForLab FutureLabPE arbeitet LEA mit anderen Hochschulen und Forschungsinstituten, wie dem Fraunhofer-Institut für Elektronische Nanosysteme (ENAS) in Paderborn oder dem Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie (IISB) in Erlangen, sowie mit verschiedenen Partnern aus der Industrie zusammen. Das Ziel entsprechender Forschungsprojekte ist die Identifikation, Entwicklung und Optimierung von leistungselektronischen Anwendungen, die von den neuen Leistungshalbleiter-Technologien besonders profitieren, sowie auch die Untersuchung von deren Zuverl?ssigkeit. WBG-Halbleiter bieten dabei ein enormes Potenzial - viele WBG-basierte Anwendungsger?te k?nnen erheblich kompakter und verlust?rmer dimensioniert werden als herk?mmliche Systeme, die Silizium-Halbleiter nutzen. Ein resultierender h?herer Miniaturisierungsgrad sowie eine gesteigerte Energieeffizienz bei niedrigeren Systemkosten ist für viele Anwendungen nicht nur vorteilhaft, sondern oft auch wegbereitend zur Erschlie?ung neuer Performanzklassen und Einsatzgebiete. Besonders aussichtsreiche Anwendungsfelder sind Elektromobilit?t (OnBoard-, OffBoard Leistungswandler), kompakte Stromversorgungsger?te für Datencenter und Mobilfunknetze (5G und darüber hinaus), Erneuerbare Energiesysteme (z.B. PV- oder Wind-basiert, Erzeugung, ?bertragung, Speicherung, Verteilung), dezentrale Stromversorgungen für Medizinische Anwendungen (CT, MRT, Ultraschall) sowie für die Industrieautomatisierung (z.B. Industrie 4.0).
Projektleitung: Prof. Dr.-Ing. Joachim B?cker, Universit?t Paderborn
Projektpartner: Fraunhofer IISB, Erlangen und Fraunhofer ENAS, Paderborn
Laufzeit: 2017 - 2022
F?rdervolumen gesamt: 595.592 Euro
F?rdervolumen der Universit?t: 307.146 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft
Ziel des Projekts ist die Entwicklung adaptiver Folgeregelungsverfahren für Systeme von nichtlinearen differentiell-algebraischen Gleichungen mit Anwendung auf unteraktuierte Mehrk?rpersysteme. W?hrend die Regelung voll aktuierter Mehrk?rpersysteme mit existierenden konventionellen Methoden oft sehr gut m?glich ist, fehlen systematische Methoden zur Folgeregelung unteraktuierter Systeme. Letztere besitzen weniger Stellgr??en als Freiheitsgrade und die Systeme k?nnen dadurch sehr unterschiedliche systemtheoretische Eigenschaften aufweisen. Typische Beispiele mit gro?er praktischer Bedeutung sind Systeme mit passiven Gelenken, Kr?ne, Seilroboter oder Leichtbausysteme mit flexiblen K?rpern. Gerade bei komplexeren Systemen, wie beispielsweise bei kinematischen Schleifen oder der Einbindung flexibler K?rper, bietet sich oft die Modellierung als differentiell-algebraische Gleichung an. In diesem Projekt soll zun?chst durch eine Strukturanalyse eine Charakterisierung wichtiger systemtheoretischer Gr??en und Eigenschaften, wie etwa Eingangs-Zustands-Stabilit?t, Index, Relativgrad und interne Dynamik, auf der Basis physikalischer Betrachtungen erfolgen.Probleme im Reglerentwurf ergeben sich dabei insbesondere dadurch, dass im Allgemeinen sowohl der Index des zugrundeliegenden differentiell-algebraischen Modells als auch dessen Relativgrad gr??er als eins sind und das System eine instabile interne Dynamik besitzen kann. Zur Kompensation des h?heren Relativgrads soll der von den Antragstellern Berger und Reis entwickelte Funnel-Beobachter verwendet werden. Die instabile interne Dynamik soll durch eine Vorsteuerung, der eine Modellinversion zugrunde liegt, umgangen werden. Diese Modellinversion soll auf sogenannten Servobindungen basieren, was wiederum zu differentiell-algebraischen Gleichungen führt. Die Leistungsf?higkeit und Implementierbarkeit der entwickelten Methoden sollen fortw?hrend durch ausgew?hlte experimentelle Untersuchungen abgesichert werden.
Projektleitung: Jun.-Professor Dr. Thomas Berger der Universit?t Paderborn
Projektpartner: Prof. Dr.-Ing. Robert Seifried (Technische Universit?t Hamburg), Mitverantwortlicher: Prof. Dr. Timo Reis (Universit?t Hamburg)".
Laufzeit: 2018 - 2026
Projektvolumen gesamt (Teilprojekt E1): 516.200 Euro
Projektvolumen der Universit?t: 302.500 Euro
Gef?rdert durch: DFG
Sicherheit ist ein zentraler Aspekt in Softwaresystem und damit auch besonders für in "Intelligente Technische Systeme". Digitale Angriffe werden immer leistungsf?higer, besonders mit künftigen Quantencomputern. Kryptographie ist essentiell für die Entwicklung von sicheren und vertrauenserweckenden IT-Systemen. Daher werden im SFB 1119 CROSSING and der TU Darmstadt kryptographiebasierte Sicherheitsl?sungen für langfristige vertrauenswürdigen Computerumgebungen erforscht.
Das Teilprojekt E1 wird von den Arbeitsgruppen von Prof. Eric Bodden an der Universit?t Paderborn und von Prof. Mira Mezini an der TU Darmstadt geleitet. Im Teilprojekt E1 liegt der Fokus auf der sicheren Integration von kryptographischer Software. Das im Teilprojekt entwickelte Krypto-Assistenten-Tools CogniCrypt erm?glicht bereits die Generierung von sicherem Code für g?ngige kryptographische Aufgaben und die statische Analyse auf die korrekte Implementation von Krypto-APIs wie die Java Cryptographic Architecture , Bouncy Castle und Tink.
Auf Basis von CogniCrypt werden automatisierte Verfahren zur Verwendung von Kryptographie umgesetzt, um den sicheren Einsatz von Kryptographie zu unterstützen.
Projektleitung: Prof. Eric Bodden (für Teilprojekt E1), Heinz Nixdorf Institut der Universit?t Paderborn
Sprecher des SFB1119: Prof. Marc Fischlin, TU Darmstadt
Laufzeit: 01/2020 bis 03/2023
F?rdervolumen gesamt: 1,4 Mio. Euro
F?rdervolumen der Universit?t: 836.000 Euro
Gef?rdert durch: Europ?ische Union und Land Nordrhein-Westfalen
Die F?higkeit, innovative Gesch?ftsmodelle für die eigenen Produkte und Dienstleistungen zu entwickeln, ist von zentraler Bedeutung für jedes Unternehmen. Gleichzeitig tun sich jedoch insbesondere viele kleine und mittlere Unternehmen (KMU) schwer damit, den abstrakten Begriff ?Gesch?ftsmodellinnovation“ mit Leben zu füllen, d. h. Gesch?ftsmodellinnovationen zielgerichtet und systematisch zu entwickeln. Dadurch steigt das Risiko, dass innovative Produkte und Dienstleistungen nicht erfolgreich vermarktet werden – was wiederum der Wettbewerbsf?higkeit der Unternehmen schadet und dadurch Arbeitspl?tze sowie gesellschaftlichen Wohlstand gef?hrdet. Genau hier setzt dieses Projekt an. In dem Projekt Smart GM arbeiten im SICP - Software Innovation Campus Paderborn das SI-Lab der Universit?t Paderborn, die Lehrstühle Kundisch, Hüllermeier und Wünderlich und die Unternehmen myconsult, UNITY, WP Kemper und Fellowmind gemeinsam an einem Assistenzsystem, das seinen Nutzern passende innovative Gesch?ftsmodellideen vorschl?gt. Grundlage dafür sind zum einen eine umfangreiche Wissensbasis zu Gesch?ftsmodellen, zum anderen eine künstliche Intelligenz. Die KI-Algorithmen sollen aus der gro?en Zahl m?glicher Kombinationen zielgerichtet neue Ideen erzeugen. Anschlie?end werden diese auf einer ?ffentlichen Crowd-Plattform sowie von Kunden und Experten bewertet. Mit steigender Zahl an Bewertungen wird auch die Qualit?t neuer Gesch?ftsmodellvorschl?ge des Assistenzsystems erh?ht.
Das Projekt Smart GM kombiniert erstmalig Kompetenzen und Methoden aus den Bereichen Gesch?ftsmodellinnovationen, Technikakzeptanz, maschinellem Lernen, (Crowd-basierter) Bewertung von Ideenqualit?t sowie computergestützter Ideengenerierung für die Entwicklung von Gesch?ftsmodellinnovationen und ebnet damit den Weg für eine neue Generation von Gesch?ftsmodellinnovationsmethoden – von passiver Unterstützung zu aktiver Assistenz.
Projektleitung: Prof. Dr. Dennis Kundisch der Universit?t Paderborn
Laufzeit: 10/2020 - 09/2023
F?rdervolumen gesamt: 2,4 Mio. Euro
F?rdervolumen der Universit?t: 456.000 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfahlen
Das Projekt PredicTeams hat das Ziel, ein praxisorientiertes Framework für ein pr?diktives Kompetenzmanagement für agile Teams zu entwickeln, das Unternehmen in die Lage versetzt, den ?bergang zu agiler Teamarbeit in digitalen Arbeitswelten zu bew?ltigen. Konkrete Ziele sind im Einzelnen:
- Identifikation und Operationalisierung von Kompetenzen für agile Teamarbeit im Kontext digitaler Arbeitswelten Verfügbarmachen einer Datenbank mit Instrumenten zur Messung relevanter Kompetenzen
- Methode zur Vereinfachung des Erhebungsprozesses der Kompetenzbewertung mittels semantischen Sprachanalyse
- Methodik zur Analyse von Kompetenzprofilen
- Show-Case-Anwendungen zur Erfassung von Kompetenzen mithilfe der semantischen Textanalyse sowie zur Analyse von Kompetenzprofile auf Basis der Fuzzy-set Qualitative Comparative Analysis
- Modelle und Methoden sowie ein Leitfaden zur Gestaltung eines pr?diktiven Kompetenzmanagements und zukunftsgerichtetem Teamstaffing
Die Ziele werden dadurch erreicht, dass State-of-the-Art-Messinstrumente und -Methoden in der Personal- und Organisationsforschung sowie der empirischen Methodik aufgegriffen, weiterentwickelt und für eine Anwendung im Unternehmen adaptiert und anhand von Testdaten erprobt werden.Dabei werden Daten zu Kompetenzen von Mitarbeitenden ausgewertet, zum Teil neu erhoben mit dem Ziel einer deutlichen Dimensionsreduktion. Exemplarische Datenauswertungen sollen umgesetzt und evaluiert werden. Neben der Identifikation der wichtigsten Kompetenzen soll das Verfahren der Kompetenzerfassung radikal vereinfacht werden von einer einmal j?hrlich schriftlichen Stellungnahme zur laufenden Erhebung mittels Spracheinsch?tzung und Textanalyse.Durch die geplanten Ma?nahmen wird die Grundlage für eine zeitlich effiziente Erhebung und Analyse der Kompetenzen in Unternehmen geleistet, die dem neusten Stand der Technik entspricht. Die zu entwickelnden Methoden und Modelle sollen Unternehmen dazu bef?higen, statt einem verwaltenden Kompetenzmanagement in Zukunft pr?diktives Kompetenzmanagement zu betreiben. Das Projekt ist sowohl praktisch als auch wissenschaftlich innovativ, da pr?diktives HR Analytics zwar viel diskutiert wird, jedoch noch in den Kinderschuhen steckt.
Projektleitung: Prof. Dr. Kirsten Thommes der Unviersit?t Paderborn
Laufzeit: 01.09.2019 - 31.08.2022
F?rdervolumen gesamt: 5.861.703 Euro
F?rdervolumen der Universit?t: 571.336 Euro
Gef?rdert durch: Bundesministerium für Wirtschaft und Energie, F?rderkennzeichen: 03EI6012F
Ziel des Projektes FLEMING ist es, die kontinuierliche Funktionsüberwachung und insbesondere den heutigen Sensoreinsatz in Verteilnetzen zu revolutionieren, durch Verwendung von Methoden der Künstlichen Intelligenz (KI), gepaart mit einer Verbesserung der zugeh?rigen Sensortechnik und somit wesentlich zum Erfolg der Energie- und Mobilit?tswende in Deutschland beizutragen.
Der Fokus der deutschen Klima- und Energiepolitik liegt auf einer massiven und fl?chendeckenden Einbindung von Anlagen zur Gewinnung erneuerbarer Energien sowie auf einer Integration von Lades?ulen für Elektromobilit?t in das bisherige Stromnetz. Die hieraus resultierenden zahlreichen Lastschwankungen – z.B. durch dezentrale Solaranlagen – sowie die zeitlich und r?umlich konzentrierte Energienachfrage durch Ladeinfrastruktur (eMobility) führen zu einer sehr gro?en Belastung der elektrischen Betriebsmittel und Komponenten bis hin zu einer ?berlastung. Gleichzeitig sind die Netzbetreiber einem steigenden Effizienz- und Kostendruck ausgesetzt.
Aktueller Netzzustand von kritischer Relevanz
Um die Ziele der Energie- und Mobilit?tswende bei gleichbleibender Versorgungsqualit?t zu erreichen, ben?tigen die Netzbetreiber einerseits ein verbessertes Verst?ndnis des aktuellen Zustandes des vorhandenen Netzes und seiner Komponenten (Monitoring). Dadurch k?nnen potentielle Sch?den und Anlagenausf?lle frühzeitig erkannt bzw. vorhergesagt oder durch verbesserte Regelung vermieden werden. Andererseits werden geeignet genaue, zuverl?ssige und leicht nachrüstbare Sensoren zur Regelung im Rahmen eines intelligenten Lastmanagements ben?tigt. Dies erm?glicht erst eine flexiblere Netznutzung unter der Ausnutzung von tempor?rem ?berlastpotenzial und somit den fl?chendeckenden Ausbau der zukünftig ben?tigten Energieverteilungs-Infrastruktur, insbesondere im Hinblick auf eine stark zunehmende Elektrifizierung des Automobilsektors.
Das Szenario verlangt nach einem durchg?ngigen Einsatz von Sensorik, Informations- und Kommunikationssystemen zur Erfassung der n?tigen Daten der einzelnen Netzbetriebsmittel und -komponenten. Bisher verfügbare Sensorl?sungen zur Zustandsüberwachung werden ausschlie?lich in Nischen- oder Randanwendungen eingesetzt. Ein durchg?ngiger Einsatz scheitert zurzeit an zu komplexem Engineering sowie einer begrenzten Lebensdauer und Leistung der Sensorsysteme, so dass diese nur für einfache ?berwachungsaufgaben meist einzelner Betriebsmittel genutzt werden k?nnen. Weiterhin steht bisherige Sensorik in der Regel nur für Anlagen eines Herstellers zur Verfügung, so dass eine ?bertragbarkeit nicht m?glich und eine generische, systemweite Datenanalyse massiv erschwert ist. Das Vorhaben soll den heutigen Sensoreinsatz in Verteilnetzen durch Verwendung von Methoden der Künstlichen Intelligenz (KI) zusammen mit einer Erweiterung der Sensortechnik grundlegend verbessern. Die daraus abgeleiteten Unterziele umfassen alle wichtigen Aspekte des Sensoreinsatzes in elektrischen Betriebsmitteln.
Projektleitung: Prof. Dr. Daniel Beverungen der Universit?t Paderborn und Prof. Dr. Eyke Hüllermeier der Universit?t Paderborn
Projektpartner: ABB AG Forschungszentrum Deutschland, Forschungsinstitut für Rationalisierung e.V. (FIR) aus Aachen, Karlsruher Institut für Technologie (KIT), S?C Energie und H2O GmbH aus Coburg sowie Heimann Sensor GmbH
Laufzeit: 01.01.2020 - 31.12.2022
F?rdervolumen gesamt: 1.100.000 Euro
F?rdervolumen der Universit?t: 242.824 Euro
Gef?rdert durch: Europ?ische Union und das Land Nordrhein-Westfalen
Die interaktive, multimodale OWL.Kultur-Plattform soll das kulturelle Angebot der Region bündeln und künftig besser sicht- und nutzbar machen sowie m?glichst viele Schnittstellen zu bereits bestehenden Systemen und anderen Diensten einrichten. 360直播吧 richtet sich an Kulturanbieter, Kulturvermittler sowie Nutzer der Kulturangebote und erm?glicht, passende Kulturangebote mittels individualisierter Filterm?glichkeiten zu finden, Kulturakteure auch bereichsübergreifend besser miteinander zu vernetzen, die Sichtbarkeit des Ehrenamts und der Vereine zu st?rken, regionale Grenzen zu überwinden und – insbesondere für den l?ndlichen Raum – Mobilit?t zu gew?hrleisten, um so auch hier Kulturteilhabe für alle zu erm?glichen. Kulturakteure profitieren von der OWL.Kultur-Plattform, da diese zudem Unterstützungsleistungen für die Organisation von Kulturveranstaltungen und -projekten bereith?lt. Somit kann dieses intelligente, zielgruppenspezifische und nutzerorientierte Assistenzsystem einen Beitrag dazu leisten, OWL als Kulturmarke zu etablieren, indem das Kulturpublikum die Kulturregion OWL st?rker als Ganzes wahrnimmt.
Projektleitung: Prof. Dr. Daniel Beverungen der Universit?t Paderborn
Projektpartner: OstwestfalenLippe GmbH, Bielefeld, aXon Gesellschaft für Informationssysteme mbH, Paderborn
Laufzeit: 01.01.2018 - 31.12.2022
F?rdervolumen gesamt: aufgrund von Vertragsbedingungen nicht ver?ffentlicht
F?rdervolumen der Universit?t: aufgrund von Vertragsbedingungen nicht ver?ffentlicht
Gef?rdert durch: IHK Cottbus, verschiedenen Automobilherstellern, Telematikherstellern und Logistikunternehmen
Der Verkehrssektor ist für etwa 25 % der Treibhausgasemissionen verantwortlich. Die Minimierung des Kraftstoffverbrauchs ist eines der Hauptziele von Klimaschutzma?nahmen. Für Logistikunternehmen hat die Minimierung des Kraftstoffverbrauchs den positiven Nebeneffekt, dass sie ihre variablen Kosten senken k?nnen. Obwohl soziale und betriebliche Ziele übereinstimmen, gelingt es vielen Unternehmen nicht, den Kraftstoffverbrauch zu senken. Einer der Hauptgründe dafür ist das Fahrverhalten der Lkw-Fahrer.
In diesem Projekt kombinieren wir Erkenntnisse aus Verhaltenswissenschaft und Technologie und verbessern Feedback-Mechanismen für Lkw-Fahrer. Wir nutzen Feedback-Mechanismen und Gamification. Unsere ersten Ergebnisse führten zu einer nachhaltigen Reduzierung von etwa 10 % des Kraftstoffs.
Darüber hinaus analysieren wir auch, wie sich die Umweltbedingungen, insbesondere verschiedene Aspekte der Verkehrsdichte, auf die Neigung der Fahrer zur Automatisierung und damit zu einem guten Fahrverhalten auswirken.
Projektleitung: Prof. Dr. Kirsten Thommes der Unviersit?t Paderborn
Partner: BTU Cottbus Senftenberg sowie diverse Nutzfahrzeug- und Telematikhersteller
Laufzeit: April 2021 bis M?rz 2024
F?rdervolumen gesamt: 603.220 Euro
F?rdervolumen der Universit?t: 307.686 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Das Projekt zielt darauf ab, ein Verfahren zur Prognose der nutzbaren Restlebensdauer von Systemen zu entwickeln, welche unter instation?ren Bedingungen, wie zum Beispiel variierenden Lasten und Drehzahlen betrieben werden. Daher werden klassische datengetriebene und modellbasierte Verfahren der Ingenieurwissenschaften mit Verfahren aus dem Bereich der künstlichen Intelligenz kombiniert. Diese hybride Kombination soll genutzt werden, um Betriebsbedingungen zu kategorisieren, Versagensmodi zu identifizieren und um die nutzbare Restlebensdauer von technischen Systemen vorherzusagen. Au?erdem sollen diese Methoden für die Prognose der nutzbaren Restlebensdauer für bereits genutzte Systeme eingesetzt werden, die mit geeigneten Sensoren nachgerüstet wurden, aber keine Sensordaten ihrer vergangenen Betriebszeiten aufweisen.
Projektleitung: Prof. Dr.-Ing. habil. Walter Sextro der Unviersit?t Paderborn und Prof. Dr. Eyke Hüllermeier der Ludwig-Maximilians-Universit?t
Partner: Prof. Dr. Eyke Hüllermeier, Ludwig-Maximilians-Universit?t München
Laufzeit: 2022 bis 2025
F?rdervolumen gesamt: 455.554 Euro
F?rdervolumen der Universit?t: 226.260 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Ziel des Projekts ist die Entwicklung, numerische Umsetzung und Analyse der konzeptuell neuen Regelungsmethodik Funnel MPC (FMPC). Diese verzahnt auf innovative Weise erstmalig adaptive Folgeregelung, Lernen und optimierungsbasierte Verfahren. Funnel-Regelung und modellpr?diktive Regelung (MPC) sind für sich betrachtet aktuelle Forschungsgebiete der Regelungstechnik und der mathematischen Systemtheorie, die beide den Spagat zwischen Theorie und Anwendung leisten. FMPC nutzt deren bekannte Vorteile (Einhalten von Ausgangsrestriktionen und Steuerbeschr?nkungen, inh?rente Robustheit, hervorragende Regelgüte usw.), um das langfristige Ziel eines universellen Reglers für nichtlineare Systeme zu erreichen. FMPC besteht aus drei Komponenten:
1.) In einem modellbasierten Anteil des Reglers werden Elemente der Funnel-Regelung in MPC integriert, indem deren Verst?rkungsfaktor in die Konstruktion der Stufenkosten einflie?t. Dies sichert einerseits die strikte Einhaltung der Ausgangsrestriktionen und erm?glicht es letztlich, rekursive Zul?ssigkeit mittels einer Argumentation über Optimalit?t rigoros nachzuweisen – ohne (stabilisierende) Endbedingungen und unabh?ngig von der L?nge des Pr?diktionshorizonts.
2.) MPC garantiert i.A. keine Robustheit. Entsprechend ist es ein Hauptziel, die der Funnel-Regelung inh?rente Robustheit auf FMPC zu übertragen. Dazu erfolgt eine Erweiterung des Regelkreises um eine modellfreie Komponente durch Kopplung mit einem Funnel-Regler bzgl. des Pr?diktionsfehlers des modellbasierten Anteils. Für diese Kombination soll Robustheit gegenüber Modellunsicherheiten rigoros nachgewiesen werden.
3.) Durch eine zweite Erweiterung des Regelkreises um eine Lernkomponente erfolgt eine kontinuierliche Modelladaption und, damit einhergehend, eine Verbesserung der Regelgüte. Hierzu werden unbekannte Modellparameter approximiert und der Systemzustand gesch?tzt. W?hrenddessen garantiert das robustifizierte FMPC die strikte Einhaltung der Ausgangsrestriktionen. Dabei bewirkt der Funnel-Regler gem?? numerischer Tests eine hinreichend starke Anregung des Systems, welche den für den Lernprozess notwendigen hohen Informationsgehalt in den Eingangs-Ausgangs-Daten sicherstellt. Dies soll im Projekt mit dem Konzept ?persistency of excitation“ mathematisch pr?zise beschrieben und nachprüfbar ausgelegt werden. Eine Machbarkeitsstudie soll anhand der Regelung von Magnetschwebebahnen erfolgen, wobei eine regelm??ige Rückkopplung zwischen Theorie und numerischer Praxis vorgesehen ist. In der Schweberegelung muss die Einhaltung eines vorgegebenen Abstands zwischen Aufh?ngung des Fahrzeugs und Fahrbahn sichergestellt werden. Weiterhin ist eine Robustheit gegenüber Unsicherheiten (z.B. Gesamtmasse des Fahrzeugs abh?ngig von der Auslastung des Fahrgastbereichs) und St?rungen (z.B. Windverh?ltnisse) erforderlich. Gleichzeitig ist eine hohe Regelgüte, welche u.a. den Fahrkomfort einschlie?t, erwünscht. Genau diese Eigenschaften vereint das innovative Konzept FMPC.
Projektleitung: Jun. Prof. Thomas Berger der Unviersit?t Paderborn
Projektpartner: Prof. Dr. Karl Worthmann (Technische Universit?t Ilmenau)
Laufzeit: 10/2021 - 09/2023
Projektvolumen gesamt (Universit?t): 994.000 Euro
Gef?rdert durch: BMBF
Mit der F?rderbewilligung des Bundesministeriums für Bildung und Forschung (BMBF) startete Anfang Oktober 2021 das Projekt ?Trainings-, Validierungs- und Benchmarkwerkzeuge zur Entwicklung datengetriebener Betriebs- und Regelungsverfahren für intelligente, lokale Energiesysteme“ (DARE). In den kommenden zwei Jahren werden Wissenschaftler*innen des SICP – Software Innovation Campus Paderborn gemeinsam mit Wissenschaftler*innen des Kompetenzzentrums für nachhaltige Energietechnik (KET) sowie den assoziierten wirtschaftlichen Partnern WestfalenWIND GmbH und Westfalen Weser Netz GmbH ein Open-Source Simulations- und Benchmarkframework entwickeln. Das Framework soll dazu dienen, Probleme zu adressieren, die beim Betrieb von dezentralen Energienetzen aufkommen k?nnen. Das übergeordnete Ziel des Projektvorhabens ist es, die Transformation des derzeitigen Energieversorgungssystems auf eine nachhaltige und durch erneuerbare Energien gepr?gte Struktur voranzutreiben.
Microgrids als L?sungskomponente für die Energiewende
Die Transformation hin zu einer nachhaltigen, effizienten sowie kostengünstigen Energieversorgungsstruktur ist eine der zentralen Herausforderungen des 21. Jahrhunderts. Um die Energiewende zu realisieren, k?nnen zellulare und dezentrale Energiesysteme, so genannte Microgrids, eine wichtige L?sungskomponente darstellen. Microgrids sind lokale Energienetze, die sowohl netzgekoppelt als auch autonom im Inselbetrieb operieren und Industrieunternehmen und Haushalte mit Energie versorgen k?nnen. 360直播吧 bestehen aus Energiequellen (z.B. Windkraftanlagen), Energiespeichern (z.B. Batterien) und Energieverbrauchern verschiedener Sektoren (Elektrizit?t, W?rme, Mobilit?t).
?Microgrids haben den Vorteil, dass durch deren lokale Integration regenerative Energie verbrauchsnah bereitgestellt und damit über kurze Entfernung direkt vom Verbraucher genutzt werden kann. Dadurch k?nnen überregionale Energienetze entlastet werden und der Bedarf für den Netzausbau sinkt. Au?erdem erh?ht sich wiederum der Anteil der regenerativen Energien, da der verlustbehaftete Transport über die langen Distanzen sowie unn?tige Abschaltungen regenerativer Kraftwerke aufgrund von Netzengp?ssen vermieden werden“, erl?utert Dr. Gunnar Schomaker, R&D Manager ?Smart Systems“ im SICP.
Zentraler Baustein zur Herstellung der grunds?tzlichen Energieversorgung in Schwellen- und Entwicklungsl?ndern
?Dass Microgrids auch autonom im Inselbetrieb operieren k?nnen, ist ein typischer Fall für abgelegene, netzferne Areale. Neben dem Beitrag zur Energiewende in Europa stellt das Microgrid dementsprechend einen zentralen Baustein zur Herstellung der grunds?tzlichen Energieversorgung in Schwellen- und Entwicklungsl?ndern (insb. Sub-Sahara Afrika) dar, da dort der Aufbau einer zentralen Energieinfrastruktur in dünnbesiedelten, l?ndlichen R?umen auch langfristig nicht in Aussicht steht“, erl?utert Dr.-Ing. Oliver Wallscheid, wissenschaftlicher Leiter des Forschungsprojekts.
Herausforderungen beim Betrieb von Microgrids
Microgrids k?nnen ein gro?es Potential für die Energiewende und die Herstellung der grunds?tzlichen Energieversorgung in Schwellen- und Entwicklungsl?ndern mit sich bringen, jedoch geht dies auch mit Herausforderungen einher, die noch bew?ltigt werden müssen. Die wesentliche Herausforderung, und damit auch die zentrale Forschungsfrage des Projektvorhabens, ist die Sicherstellung einer durchg?ngigen und effizienten Energieversorgung durch Betriebs- und Regelungsverfahren. ?Gegenüber den klassischen, zentralen Gro?netzen gibt es bei dezentralen Netzen Herausforderungen, die unter anderem die Stabilit?t betreffen. Denn eine sichere Energieversorgung ist in dezentralen Netzen bedingt durch die Volatilit?t regenerativer Kraftwerke und typischerweise nur geringe Speicher- und Reservekapazit?ten deutlich schwieriger aufrechtzuerhalten als in zentralen Netzen, welche durch konventionelle Gro?kraftwerke gestützt werden“, erkl?rt Dr. Wallscheid.
?Zum Betrieb und zur Regelung derart stochastischer, heterogener und volatiler Energienetze k?nnen die traditionellen Top-Down-Strategien zentraler Gro?netze demnach nicht übertragen werden“, so Jun.-Prof. Dr. Sebastian Peitz. ?Als m?gliche L?sung zeichnen sich stattdessen datengetriebene und selbstlernende Verfahren ab, z.B. aus dem Bereich des Reinforcement Learning. Hierbei ist jedoch das Problem, dass diese lernenden und neuartigen Regelungsverfahren aufgrund von Sicherheits- und Verfügbarkeitsaspekten nicht unmittelbar im Feld eingesetzt werden k?nnen, sondern zun?chst auf Basis synthetischer Daten in einem geschlossenen Simulationszyklus verbessert und bewertet werden müssen“, erg?nzt Jun.-Prof. Peitz.
Zwar gebe es bereits L?sungsans?tze, jedoch seien diese ebenfalls sehr heterogen und würden sich h?ufig an stark vereinfachten Modellumgebungen orientieren, sodass keinerlei Aussagen über einen zukünftigen Praxistransfer m?glich seien. Zudem gebe es keinen etablierten Vergleichsstandard anhand dessen datengetriebene Regler objektiv und quantifizierbar bewertet werden k?nnten.
Open-Source Simulations- und Benchmarkframework
?Das Ziel innerhalb unseres Projektes DARE ist es daher, ein Open-Source Simulations- und Benchmarkframework aufzubauen, welches den zuvor erl?uterten Problemrahmen beim Betrieb dezentraler Energienetze abbildet. Durch leicht zug?ngliche sowie standardisierte Trainings-, Validierungs- und Benchmarkwerkzeuge soll die Erforschung datengetriebener Regler für die Energietechnik beschleunigt und vergleichbar gemacht werden“, so Dr. Wallscheid.
Durch die Integration wirtschaftlicher Partner aus der energietechnischen Praxis legt das Projekt au?erdem gro?en Wert auf die Abbildung realistischer Bewertungsszenarien. Das zu erstellende Open-Source Framework werde daher auch einen wichtigen Beitrag hin zum Transfer datengetriebener Regler von der Simulation hin zum Feldeinsatz leisten.
Projektleitung: Dr.-Ing. Oliver Wallscheid, Universit?t Paderborn und Jun.-Prof. Dr. Sebastian Peitz, Universit?t Paderborn
Projektpartner: Kompetenzzentrum für nachhaltige Energietechnik (KET); Software Innovation Lab (SI-Lab); WestfalenWIND GmbH; Westfalen Weser Netz GmbH; Prof. Dr. Eyke Hüllermeier, LMU München
Laufzeit: 01.04.2021 - 31.03.2023
F?rdervolumen gesamt: 1.743.292 Euro
F?rdervolumen der Universit?t: 387.120 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes NRW
Prozesse bilden den organisatorischen Kern von Unternehmen und Organisationen und helfen, diese zu strukturieren. Um diese Abl?ufe datengetrieben zu analysieren, kann Process Mining angewandt werden. In Wirtschaftsbereichen, wie dem Online-Handel, ist dieser Ansatz bereits etabliert. Allerdings besteht in industriellen Prozessen, wie der Produktentstehung oder individuellen Auftragsabwicklung von Maschinen, welche einen hohen Grad an Kreativit?t und Fachwissen ben?tigen, bisher in der Praxis sowie Wissenschaft eine Lücke. Gründe hierfür waren unter anderem, dass selten ausreichende Datenmengen zu den Prozessen zur Verfügung standen, welche oft unstrukturierter und flexibler sind, als bspw. ein Bestellvorgang bei einem Versandh?ndler von Standardgütern. Somit werden in diesem Fall andere Herausforderungen an die Analysen gestellt.
Das Projekt "BPM-I4.0" zielt nun auf eine ganzheitliche Entwicklung, Implementierung und Evaluation von Process Mining Verfahren für die genannten industriellen Prozesse ab. Dies umfasst sowohl die Analyse von vergangenen und laufenden Prozessinstanzen, als auch die Pr?diktion zukünftiger Prozessschritte sowie der Bereitstellung gezielter Handlungsempfehlungen durch Pr?skription. Dafür werden innovative Vorgehensweisen, Konzepte, Algorithmen und digitale Werkzeuge entwickelt und prototypisch im Produktentstehungsprozess der Weidmüller GmbH & Co KG aus Detmold und dem Auftragsabwicklungsprozess der GEA Westfalia Separator Group GmbH aus Oelde angewandt und evaluiert. Ebenso ist CONTACT Software als Entwicklungspartner eingebunden, welche ihre Expertise im Bereich Process Mining und Product Lifecycle Management einflie?en lassen. Weiterhin wird die Universit?t Paderborn durch das SI-Lab des Software Innovation Campus Paderborn mit den Lehrstühlen von Prof. Daniel Beverungen und Prof. Oliver Müller vertreten, wobei auch Forscher des Fraunhofer IEM eingebunden sind.
Die Ergebnisse des Projekts sollen die Unternehmen erm?chtigen, ihre Kernprozesse durch die Analyse der Prozessdaten zu verbessern und die Ausführung proaktiv zu steuern, um mittel- und langfristig wettbewerbsf?hig zu bleiben. Darüber hinaus werden ebenso wichtige, wissenschaftliche Ergebnisse im noch jungen Feld des pr?skriptiven Process Minings erarbeitet. Zus?tzlich bietet auch die aktive Anwendung im Unternehmensumfeld die M?glichkeit, relevante Beitr?ge zu erarbeiten.
Projektleitung: Prof. Dr. Daniel Beverungen, Universit?t Paderborn
Projektpartner: GEA Westfalia Separator Group GmbH, Oelde; CONTACT Software GmbH, Paderborn; Weidmüller GmbH & Co KG, Detmold; Fraunhofer-Institut für Entwurfstechnik Mechatronik (IEM), Paderborn
Laufzeit: Oktober 2022 - September 2025
Projektvolumen gesamt (Universit?t): 617.716 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Projekt im SPP 2353 ?Mehr Intelligenz wagen – Entwurfsassistenten in Mechanik und Dynamik“
Das Schwerpunktprogramm SPP2353 ?Mehr Intelligenz wagen – Entwurfsassistenten in Mechanik und Dynamik“ zielt auf die Entwicklung eines Assistenzsystems für den teilautomatisierten Entwurf technischer Systeme ab, wobei Methoden aus den Bereichen Optimierung, künstliche Intelligenz, Dynamik und Mechanik kombiniert werden sollen.
Im Rahmen des Projekts HyM3 soll ein flexibles und adaptives, datengetriebenes Framework für die multikriterielle Optimierung komplexer Mehrk?rpersysteme erarbeitet werden. Bei der multikriteriellen Optimierung von Mehrk?rpersystemen kommt es zu einer Vielzahl von Modellaufrufen und -auswertungen, wodurch ein Konflikt zwischen Rechenzeit der Auslegung und Genauigkeit des Modells entsteht: Genaue Modelle, die für eine gute Identifikation des optimalen Designs notwendig sind, sind in der Regel rechenaufwendig. Umgekehrt sind schnelle Modelle, die zu einem akzeptablen Rechenaufwand führen würden, in der Regel eher ungenau. Dieses Problem wird dadurch verst?rkt, dass in der Mehrzieloptimierung nicht ein einziges Optimum, sondern gleich die gesamte Menge optimaler Kompromisse (die Paretomenge) berechnet werden muss.
Um diesem Problem entgegenzutreten, soll das genutzte Modell adaptiv im Verlaufe des Optimierungsprozesses angepasst werden k?nnen. Um bei den Modellaufrufen, bei denen keine hohe Genauigkeit gefordert ist, Rechenzeit einzusparen, wird das genutzte physikalische Modell reduziert. Die durch die Reduktion auftretenden Ungenauigkeiten werden dann mithilfe von datengetriebenen Modellanteilen korrigiert. Bei den Modellaufrufen, bei denen eine hohe Genauigkeit gefordert ist, wird das vollumf?ngliche physikalische Modell genutzt, welches sich ebenfalls durch datengetriebene Erg?nzungen verbessern lassen kann.
Der Lehrstuhl für Dynamik und Mechatronik kümmert sich im Projekt haupts?chlich um die Adaptivit?t der genutzten Modelle durch den Einsatz von hybrider Modellierung. In der Fachgruppe Data Science for Engineering werden darauf aufbauend effiziente, datenbasierte Mehrzieloptimierungsmethoden entwickelt, um die Anzahl teurer Simulationen so stark wie m?glich zu reduzieren.
Projektleitung: Jun. Prof. Dr. Sebastian Peitz, Universit?t Paderborn und Prof. Dr.-Ing. habil. Walter Sextro, Universit?t Paderborn
Laufzeit: 01.01.2023 bis 31.12.2024
F?rdervolumen gesamt: 2,4 Mio. Euro
F?rdervolumen der Universit?t: 213.000 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Der Umgang mit ungebundenen Spontanhelfenden und deren zielführender Einsatz in Notfall-, Krisen- und Katastrophensituationen stellen Beh?rden und Organisationen mit Sicherheitsaufgaben (BOS) zunehmend vor erhebliche koordinatorische Herausforderungen. Allein in jüngster Vergangenheit kam es mit der ?berflutung des Ahrtals, der Corona-Pandemie oder dem Zustrom ukrainischer Kriegsflüchtlinge zu unterschiedlichen Gro?lagen, bei denen Spontanhelfende eine bedeutende Rolle gespielt haben. In der Praxis fehlt es jedoch nach wie vor an Werkzeugen und Vorgehensweisen, um eine strukturierte Zusammenarbeit zwischen BOS und Bev?lkerung schnell und zielgerichtet umzusetzen. Damit ordnet sich die Herausforderung in den Kontext der Digitalisierung der zivilen Sicherheit ein.
Im Leuchtturmprojekt ?Koordination von Spontanhelfenden im Krisen- und Katastrophenfall“ (KatHelfer-PRO) entwickelt das Verbundkonsortium eine sozio-technische Gesamtl?sung zur Koordination von Spontanhelfenden, die als Software-Demonstrator (TRL 7) mit begleitendem Organisationskonzept direkt einsatzf?hig ist. Grundlage der angestrebten Gesamtl?sung bilden vornehmlich die Ergebnisse und Erfahrungen der erfolgreich abgeschlossenen Projekte KUBAS, ENSURE, REBEKA, WUKAS, KOKOS, KOPHIS und INKA der BMBF-gef?rderten Sicherheitsforschung (SIFO).
Verbundpartner: T-Systems (Koordinator), Universit?t Paderborn, Martin-Luther-Universit?t Halle-Wittenberg, Fraunhofer FOKUS, Universit?t Stuttgart, Malteser Hilfsdienst, DRK Kreisverband Berlin Sch?neberg-Wilmersdorf.
Ansprechpartner: Prof. Dr. Guido Schryen
Das Projekt wird von mehr als 20 assoziierten Partnern unterstützt, darunter der Arbeiter-Samariter-Bund, die Johanniter Unfall-Hilfe, das Bundesamt für Bev?lkerungsschutz und Katastrophenhilfe, die Berliner Feuerwehr, die Stadt Halle (Saale), die Stadt Cottbus, die Kreisverwaltung Ahrweiler, der Helferstab Hochwasser Ahr, die Senatsverwaltung für Inneres, Digitalisierung und Sport der Stadt Berlin, das Ministerium für Inneres und Sport des Landes Sachsen-Anhalt, der T?V Rheinland sowie weitere Universit?ten und Wirtschaftsunternehmen.
Laufzeit: 01.09.2021 – 31.08.2024
F?rdervolumen gesamt (Universit?t): 500.100 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
In diesem Transferprojekt erforschen wir, wie Techniken aus der Qualit?tssicherung von Diensten in On-The-Fly-Dienstleistungsm?rkten auf das dr?ngende Problem der sicheren Verwaltung von Open- Source-Abh?ngigkeiten in gro?en Softwareentwicklungs-?kosystemen angewendet werden k?nnen. Dazu werden neuartige Techniken entwickelt und bewertet, um die Einbindung bekannterma?en anf?lliger Abh?ngigkeiten von Drittanbietern in Software-Kompositionen effizient und pr?zise zu erkennen und zu entsch?rfen. Das Projekt zielt darauf ab, eine Open-Source-Werkzeugkette namens HEKTOR aufzubauen, die die sichere Entwicklung von Anwendungen und Diensten unterstützt. Diese Entwicklungen sollen prinzipiell eine pr?zise und effiziente Analyse von Software-Artefakten in gro?em Umfang erm?glichen. Die Wirksamkeit der entwickelten Techniken werden in einer realen Umgebung bei der Partnerfirma SAP SE validiert.
Projektleitung: Prof. Dr. Eric Bodden der Universit?t Paderborn
Projektpartner: SAP Deutschland SE & Co. KG
Laufzeit: 01.09.22 – 31.08.25
Projektvolumen gesamt (Universit?t): 900.000 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Motivation
Komplexe dynamische Systeme zu modellieren, ist eine Herausforderung in vielen Disziplinen wie den Ingenieur-, Natur- und Gesellschaftswissenschaften. Entsprechende mathematische Modelle sind die Grundlage für viele Anwendungen wie z. B. die Prozessüberwachung und Regelung technischer Anlagen oder zur Vorhersage von Pandemien. Experten-basierte Ans?tze geben das Systemverhalten robust und interpretierbar wieder, ben?tigen aber h?ufig viel Zeit und Personalressourcen. Deshalb hat sich ein starker Trend zur datenbasierten Modellierung dynamischer Systeme mittels des Maschinellen Lernens entwickelt. Diese Black-Box Modelle lassen sich mit verfügbaren Softwarewerkzeugen und ohne nennenswertes Vorwissen zügig generieren. Allerdings sind ihre Funktionsweise bzw. Probleml?sungsstrategie nur schlecht nachvollziehbar bzw. erkl?rbar.
Ziele und Vorgehen
Ziel der Nachwuchsgruppe ?ML-Expert“ ist es, eine hybride Modellbildung dynamischer Systeme zu entwickeln, die sowohl das Daten- als auch Expertenwissen einbezieht. Dazu wird u. a. untersucht, wie a priori festgelegte Modellstrukturen sowie systemtheoretische Modelleigenschaften auf unterschiedlichen Abstraktionsebenen in den Modellbildungsprozess integriert werden k?nnen. Darauf aufbauend sollen automatisierbare Methoden- und Softwarepakete erarbeitet werden, welche die Datengenerierung, den eigentlichen Modellierungsprozess sowie die abschlie?ende Validierung umfassen. Hierdurch soll die Modellgüte in Bezug auf Genauigkeit, Robustheit und Komplexit?t für verschiedene Anwendungsdom?nen entscheidend beschleunigt und verbessert werden.
Innovationen und Perspektiven
Die entwickelten L?sungen werden kostenfrei als Open-Source zur Verfügung gestellt. Durch eine effiziente und ressourcenorientierte Datengenerierung, Modellbildung und -validierung werden zukünftig schnelle Entwicklungszyklen erreicht, was insbesondere für industrielle Anwendungen z.B. in der Automotive-, Energie- oder Automatisierungsbranche sehr relevant ist. Die geplanten Arbeiten sind aber dom?nenübergreifend ausgerichtet sein.
Projektleitung: Dr.-Ing. Oliver Wallscheid der Universit?t Paderborn
Laufzeit: 04.2023 bis 04.2026
F?rdervolumen gesamt: 3,16 Mio. Euro
F?rdervolumen der Universit?t: 1,86 Mio. Euro
Gef?rdert durch: Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen
Im Projekt ?Climate neutral Business in Ostwestfalen-Lippe (Climate bOWL)“ arbeiten Wissenschaftler*innen der Universit?t Paderborn, vertreten durch den Software Innovation Campus Paderborn und das Fachgebiet Leichtbau im Automobil, mit der Universit?t Bielefeld und den Praxispartnern Miele, GEA, Phoenix Contact sowie NTT Data interdisziplin?r zusammen, um Unternehmen bei der Erreichung von Klimaschutzzielen zu unterstützen. Auf dem Weg zur Klimaneutralit?t bedarf es einer ganzheitlichen Herangehensweise, die ressourceneffizient die Aggregation und Bewertung von Treibhausgasemissionen (THGE) sowie die Identifizierung und Priorisierung von THGE-Reduktionsma?nahmen erm?glicht. Dieser Herausforderung nimmt sich das Projekt Climate bOWL mit der Entwicklung eines digitalen Assistenzsystems an, welches Unternehmen bei der standardisierten und automatisierten Datenerhebung sowie bei der Identifizierung von Effizienzpotentialen unterstützt. Das Projekt wird im Rahmen des Spitzenclusters ?it’s OWL“ seit April 2022 mit 1,86 Millionen Euro vom Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen gef?rdert, das Gesamtvolumen des Projektes betr?gt 3,16 Millionen Euro.
Projektkoordination: Dr.-Ing. Florian Schlosser, Software Innovation Campus Paderborn
Laufzeit: 03.2022 bis 08.2025
F?rdervolumen gesamt: 2,35 Mio. Euro
F?rdervolumen der Universit?t: 367.793 Euro
Gef?rdert durch: Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Das Graduiertenkolleg NERD (North Rhine-Westphalian Experts on Research in Digitalization) m?chte die Nachwuchsf?rderung in der IT-Sicherheit an Universit?ten und Hochschulen in Nordrhein-Westfalen st?rken und das Forschungsprofil im Forschungsbereich Human Centered Systems Security nachhaltig sch?rfen. Standortübergreifend werden die Nachwuchswissenschaftlerinnen und -wissenschaftler sowie die beteiligten Professorinnen und Professoren (mitunter erstmals) zusammengeführt. Kernstück des Kollegs ist die standortübergreifende Promotion in Forschungstandems.
Projektleitung: Ruhr-Universit?t Bochum
Laufzeit: 07.2022 bis 06.2025
F?rdervolumen gesamt: 1,733 Mio. Euro
F?rdervolumen der Universit?t: 637.907 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung (BMBF)
TLS (Transport Layer Security) ist der wichtigste praktisch eingesetzte Sicherheitsstandard - mit TLS werden die Authentizit?t, Integrit?t und Vertraulichkeit privater und gesch?ftlicher Kommunikation sichergestellt, Datenschutz gew?hrleistet und komplexe IT-Systeme abgesichert. W?hrend die theoretische Sicherheit von TLS gut untersucht und verstanden ist, entstehen durch Implementierungsfehler immer wieder gravierende Sicherheitslücken, die für Angriffe ausgenutzt werden k?nnen (HeartBleed, POODLE, ROBOT, DROWN, RACCOON, ...). W?hrend die ersten Implementierungsfehler noch leicht manuell gefunden werden konnten, nutzen neuere Angriffe ein komplexes Zusammenspiel mehrerer TLS-Versionen und zahlreicher TLS-Features.
Um die Sicherheit solch komplexer kryptographischer Implementierungen sicherstellen zu k?nnen, ist die Entwicklung von Methoden zum automatisierten Testen aller m?glichen Kombinationen dieser Features auf allen Ebenen unbedingt erforderlich. Das Ziel des beantragten Projekts ist es, solche automatisierten Testmethoden zu entwickeln und praktisch in einer Testsuite umzusetzen. Unsere Testsuite kann damit für den Einsatz durch Entwickler, Integratoren, Betreibern sowie Prüfinstituten und Aufsichtsbeh?rden geeignet, um TLS-Implementierungen im Hinblick auf Sicherheit und Interoperabilit?t zu testen. Als Basis für die Testsuite wird das Open Source Framework TLS-Attacker verwendet, das gemeinsam von der Uni Paderborn und der Ruhr-Uni Bochum entwickelt wurde.
Anforderungen werden von den Firmenpartnern beigesteuert, die die Entwicklung kritisch begleiten. Eine Integration in ein Software-Testing-Framework ist geplant, sodass unsere Testsuite sowohl für Compliance- und Sicherheitstests existierender Implementierungen, als auch begleitend zur Entwicklung neuer Implementierungen eingesetzt werden kann.
Projektleitung: Juraj Somorovsky
Projektpartner: Hackmanit GmbH, InnoZent OWL e.V., Ruhr-Universit?t Bochum
Laufzeit: Juli 2022 - Dezember 2024
F?rdervolumen gesamt: 1,2 Mio. Euro
F?rdervolumen der Universit?t: 164.536 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen (MDIDE)
Digitalisierungsbestrebungen bei kleinen und mittelst?ndischen Unternehmen (KMU) gestalten sich oftmals als eine Herausforderung, weil entsprechende Kompetenzen und Werkzeuge in den Unternehmen fehlen. Insbesondere ganzheitliche Umsetzungen stellen gro?e Hürden dar. Das Projekt ?I4.0AutoServ“ hat daher das Ziel, eine ganzheitliche L?sung für die Produktion, insbesondere von KMU, aufbauend auf datenbasierten Mehrwertdiensten zu schaffen. Mithilfe dieser Mehrwertwertdienste sollen Verfügbarkeit und Zuverl?ssigkeit von Anlagen und Maschinen erh?ht werden. Ein hoher Automatisierungsgrad bei der Generierung, Bereitstellung und Anwendung von datenbasierten Mehrwertdiensten wird angestrebt. Dadurch soll die Notwendigkeit, manuelle Eingriffe zu t?tigen, weitgehendst entfallen. Weiterhin soll eine hohe Skalierbarkeit erreicht werden, um eine breite Anwendung in der Produktion verschiedenster Unternehmen zu finden.
Der Lehrstuhl für Dynamik und Mechatronik bringt bei diesem Projekt die eigene Expertise, u. a. im Themenfeld Condition Monitoring und Predictive Maintenance, ein. Der Beitrag liegt prim?r in der Entwicklung einer breit anwendbaren Toolbox zur Generierung und Bereitstellung von trainierten Modellen für die Zustandsdiagnose und -prognose. Dabei wird ein hoher Automatisierungsgrad angestrebt. Der Beitrag bildet damit den Kern der datenbasierten Mehrwertdienste, da diese durch Methoden des maschinellen Lernens angereichert werden.
Projektleitung: Prof. Dr.-Ing. habil. Walter Sextro, Universit?t Paderborn
Projektpartner: Weidmüller Interface GmbH & Co. KG, Universit?t Bielefeld, Fraunhofer IOSB-INA, Lenze SE, Friedrich Remmert GmbH, PerFact Innovation GmbH & Co. KG
Laufzeit: 2024-2027
F?rdervolumen gesamt (Universit?t): 350.140 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft
2014 haben wir das Amoebot Modell für die rigorose algorithmische Forschung im Bereich der programmierbaren Materie vorgeschlagen. Seitdem hat dieses Modell zunehmend an Einfluss gewonnen, aber sein gro?er Nachteil wie bei vielen anderen Modellen ist, dass es nur langsame Formver?nderungen erlaubt.
Vor kurzem haben wir daher eine Schaltkreiserweiterung für das Amoebot Modell vorgestellt, welche es erlaubt, verschiedene fundamentale Probleme wie Leader Election oder Kompassanpassung deutlich schneller zu l?sen als im ursprünglichen Modell. Basierend auf dieser Erweiterung wollen wir hochgradig skalierbare verteilte Algorithmen für Formtransformationen, das Finden von Fehlern in Formen und für das bestm?gliche Matching einer gegebenen Form mit einer Zielform finden. Solche hochgradig skalierbaren Algorithmen sind essenziell, um unsere Forschungsergebnisse genügend attraktiv für eine technische Umsetzung zu machen.
Projektleitung: Prof. Dr. Christian Scheideler, Universit?t Paderborn
Laufzeit: 2023 bis 2026
F?rdervolumen gesamt: 832.488 Euro
F?rdervolumen der Universit?t: 252.168 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Ziel des Projekts ist die Entwicklung adaptiver Folgeregelungsverfahren für gekoppelte Mehrk?rpersysteme mit starren und flexiblen Elementen. Die starren Komponenten werden dabei durch nichtlineare differentiell-algebraische Gleichungen beschrieben. Die flexiblen Komponenten werden zun?chst durch lineare partielle Differentialgleichungen in einer Raumdimension beschrieben. Im Verlauf des Projektes werden auch mehrdimensionale flexible Teilsysteme betrachtet, welche durch geeignete Methoden diskretisiert werden. Weiterhin weisen die Modelle jeweils eine port-Hamiltonsche Struktur auf, wodurch die physikalischen Eigenschaften (insbesondere die Energiebilanz) mathematisch genau erfasst werden k?nnen. Ein besonderes Merkmal port-Hamiltonscher Systeme ist, dass sie intrinsisch modular aufgebaut sind, weil eine Kopplung beliebiger Teilsysteme über die jeweiligen Ports erfolgen kann. Trotz dieser Vorteile hat der port-Hamiltonsche Zugang zur Modellierung bisher kaum Eingang in die Mechanik gefunden. Daher fehlen systematische Methoden zur Folgeregelung derartig gekoppelter Mehrk?rpersysteme. In diesem Projekt soll zun?chst durch eine Strukturanalyse eine Charakterisierung wichtiger systemtheoretischer Eigenschaften, wie Eingangs-Ausgangs-Strukturen, eventuelle Totzeiten und die Stabilit?t der internen Dynamik, auf der Basis physikalischer Betrachtungen erfolgen. Darauf aufbauend sollen Regelungsverfahren entwickelt werden, welche ein Verbleiben des Folgeregelfehlers innerhalb eines vorgegebenen Bereichs garantieren. Hierfür werden Methoden der Funnel-Regelung und der inversionsbasierten Vorsteuerung miteinander kombiniert, was in der ersten Projektphase für den Fall von starren Mehrk?rpersystemen in differentiell-algebraischer Form bereits zu weitreichenden Ergebnissen geführt hat. In der zweiten Projektphase wird nun die Vorsteuerung für eine Approximation der flexiblen Komponenten über grobe Diskretisierungen entworfen und mit einem Funnel-Regler für das exakte Modell kombiniert. Letzterer soll die Approximationsfehler kompensieren. Unter Ausnutzung des modularen Aufbaus port-Hamiltonscher Systeme wird weiterhin die M?glichkeit eines rekursiven Vorsteuerungsentwurfs untersucht. Zur Anwendbarkeit der Funnel-Regelung werden Ans?tze betrachtet, die jeweils eine funktionale Beziehung zwischen Ausgang und einem zum Eingang ko-lokierten alternativem Ausgang herstellen. Die Leistungsf?higkeit und Implementierbarkeit der entwickelten Methoden sollen fortw?hrend durch ausgew?hlte experimentelle Untersuchungen abgesichert werden. Die Experimente unterstützen die Auswahl technisch geeigneter Reglerentwurfsparameter und führen damit zu einer Rückkopplung zwischen Theorie und Praxis.
Projektleitung: Jun. Prof. Thomas Berger der Universit?t Paderborn
Projektpartner: Prof. Dr. Timo Reis (Technische Universit?t Ilmenau), Prof. Dr.-Ing Robert Seifried (Technische Universit?t Hamburg)
Laufzeit: 01.10.2022 - 30.09.2024
Projektvolumen gesamt: 2,5 Mio. Euro
Projektvolumen der Universit?t: 641.108,91 Euro
Gef?rdert durch: Bundesministerium für Bildung und Forschung
Ausgangssituation
Im produzierenden Gewerbe avancieren Daten zunehmend zu einer strategischen Ressource. Daten erm?glichen es, digitale Produkte und Services zu erschaffen und somit neue Wertversprechen zu realisieren. Zunehmend werden Daten dabei über Unternehmensgrenzen hinweg ausgetauscht. Es resultieren sogenannte Daten?kosysteme, in denen diverse Akteure ihre Daten einbringen, um einen Nutzen für sich selbst und das gesamte ?kosystem zu schaffen. GAIA-X leistet einen wesentlichen Beitrag, da z. B. Unternehmen bef?higt werden mit standardisierten, interoperablen Schnittstellen, Daten sicher und vertrauensvoll verfügbar zu machen, zusammenzuführen und zu teilen. Für produzierende Unternehmen und insbesondere KMU ergeben sich im Kontext von GAIA-X jedoch eine Reihe an Herausforderungen, die technischer, organisatorischer oder menschlicher Natur sein k?nnen. Die Unternehmen müssen bef?higt werden, die Chancen von GAIA-X zu identifizieren und zu evaluieren, Erfolg versprechende Anwendungen zu konzipieren und sich zum GAIA-X Anbieter zu transformieren.
Zielsetzung:
Das Forschungsprojekt URANOS-X liefert einen wesentlichen Beitrag zur Bef?higung produzierender Unternehmen für den Einsatz von GAIA-X. Bis dato gibt es nur eine begrenzte Anzahl an Leadern, die herausragendes Wissen über GAIA-X und seine Funktionen bereitstellen k?nnen. Gleichzeitig besteht ein gro?er Bedarf für Wissen bei denjenigen Akteuren, für die ein Einstieg in GAIA-X erfolgversprechende Gesch?ftsoptionen er?ffnet. Auch weitere gesellschaftliche Gruppen, wie Gewerkschaften, müssen über Potenziale und Risiken informiert sein.
?bergeordnetes Ziel des Forschungsprojekts ist es, Anforderungen, übertragbare L?sungsmuster und Methoden zur Bef?higung produzierender Unternehmen für GAIA-X zu entwickeln. Hierzu bedarf es eines Entwicklungs-Baukastens, der die genannten Stakeholder integriert und passgenaue L?sungen liefert. Er soll auf dem Wissen der Leader basieren und den sogenannten Learnern und Listenern den Einstieg in GAIA-X erm?glichen.
Projektleitung: Prof. Roman Dumitrescu der Universit?t Paderborn
Projekttr?ger: Karlsruher Institut für Technologie
Projektpartner: Fraunhofer IEM, RWTH Aachen, OFFIS
Laufzeit: 01.05.2022 - 30.04.2025
Projektvolumen gesamt: 3 Mio. Euro
Projektvolumen der Universit?t: 277.600 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen
Ausgangssituation
Die Fertigung von mechatronischen Produkten, wie beispielsweise Halbleitern, ist gepr?gt von einem erheblichen Energieverbrauch, dem Einsatz begrenzter und teils kritischer Rohstoffe sowie anspruchsvollen Herstellungsbedingungen. Diese Aspekte führen nicht nur zu Umweltauswirkungen, sondern auch zu Ressourcenknappheit und wirtschaftlicher Unsicherheit. In Anbetracht der globalen Umwelt- und Nachhaltigkeitsanforderungen ist es unerl?sslich, L?sungen zu finden, die diese Herausforderungen adressieren und zu einer verantwortungsbewussteren Herstellung solcher Produkte führen.
Zielsetzung:
Das Projekt 'ZirkuPro' hat als Hauptziel die Entwicklung einer umfassenden Methodik für eine ganzheitlich zirkul?re Produktentstehung im Kontext Intelligenter Technischer Systeme. Der Ansatz der zirkul?ren Wirtschaft wird dabei als Leitprinzip angewendet. Dies bedeutet, dass Abfall vermieden wird, indem Produkte durch Wiederverwendung, Reparatur oder Recycling in den Wirtschaftskreislauf zurückgeführt werden. Im speziellen Fokus steht dabei die Elektronik, die eine essenzielle Komponente in vielen dieser technischen Systeme darstellt. Aufgrund ihrer Komplexit?t, der Verwendung verschiedener Materialien (einschlie?lich kritischer Rohstoffe wie Seltene Erden), der oft untersch?tzten CO2-Emissionen und der sich ?ndernden rechtlichen Vorgaben, ist die Elektronikproduktion ein zentraler Bereich für Innovationen in Richtung Nachhaltigkeit. 'ZirkuPro' strebt an, eine systematische Herangehensweise zu entwickeln, die den gesamten Lebenszyklus der Produkte berücksichtigt – von der ersten Materialbeschaffung über die Herstellung bis hin zur Wiederverwertung oder Entsorgung. Indem es gelingt, die zirkul?re Produktentstehung in diesem Bereich zu etablieren, wird das Projekt nicht nur dazu beitragen, Umweltauswirkungen zu reduzieren, sondern auch langfristig die Verfügbarkeit von Ressourcen zu sichern und die Nachhaltigkeit der mechatronischen Produktfertigung zu erh?hen.
Projektleitung: Prof. Roman Dumitrescu der Universit?t Paderborn
Projektpartner: contech, Fraunhofer IEM, Fraunhofer IZM, Diebold Nixdorf, Miele, Wago
Laufzeit: 15.04.2023 - 14.10.2025
Projektvolumen gesamt: 1,84 Mio. Euro ???????
Projektvolumen der Universit?t: 475.000 Euro ???????
Gef?rdert durch: it?s owl
Ausgangssituation
Wie k?nnen Unternehmen sicherstellen, dass ihre Produkte auch zukünftig erfolgreich bleiben? Diese Frage steht im Fokus des Produktmanagements, einer Disziplin, die sich mit der Konzeption, Steuerung und ?berwachung von Produkten oder Dienstleistungen innerhalb eines Unternehmens befasst. H?ufig stützen sich Fachleute dabei auf ihre Intuition, da relevante Informationen oft über verschiedene Abteilungen hinweg verteilt sind. Das Projekt "Datenbasiertes Produktmanagement" widmet sich der Entwicklung von Ans?tzen, wie das Produktmanagement mithilfe von Datenoptimierung gest?rkt werden kann.
Zielsetzung:
Im Rahmen dieses Projekts wird das Ziel verfolgt, die Unternehmen Diebold Nixdorf, DMG Mori, Isringhausen und Schmitz Cargobull dabei zu unterstützen, herk?mmliche Aufgaben im Produktmanagement, wie beispielsweise die Konzeption neuer Produktmerkmale, mithilfe moderner Datenanalyseverfahren effizienter und erfolgreicher zu bew?ltigen. Hierbei sollen Informationen aus vielf?ltigen Quellen wie Betriebsdaten, internen Informationen aus den Bereichen Marketing und Vertrieb sowie externen Quellen wie beispielsweise Social Media aktiv genutzt werden. W?hrend des gesamten Prozesses werden die Unternehmen von den Forschungspartnern Fraunhofer IEM und Heinz Nixdorf Institut begleitet.
Projektleitung: Prof. Roman Dumitrescu der Universit?t Paderborn
Projektpartner: DMG MORI, Fraunhofer IEM, ISRI, Diebold Nixdorf, Schmitz Cargobul, Wago
Laufzeit: Juni 2022 - Februar 2025
F?rdervolumen gesamt: 3,4 Mio. Euro
F?rdervolumen der Universit?t: 875.000 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes NRW
Ausgangssituation
Die Luftfahrtindustrie steht angesichts der dr?ngenden Notwendigkeit der Dekarbonisierung vor einer herausfordernden Aufgabe. Mit dem steigenden Bewusstsein für die Auswirkungen des Luftverkehrs auf die Umwelt ist es unerl?sslich geworden, innovative L?sungen zu finden, um die CO2-Emissionen zu reduzieren und den L?rmpegel zu minimieren. Eine der Schlüsselherausforderungen liegt in der Optimierung des gesamten Flugbetriebs, wobei Sekund?raktivit?ten wie das Rollen der Flugzeuge auf dem Vorfeld eine entscheidende Rolle spielen. In diesem Zusammenhang stellt der Einsatz alternativer Antriebe eine vielversprechende Option dar, um die Umweltauswirkungen und die Betriebskosten zu verringern.
Zielsetzung:
Das Projekt "FastGate" hat sich das ehrgeizige Ziel gesetzt, die Effizienz und Umweltvertr?glichkeit des Flugbetriebs auf Verkehrsflugh?fen signifikant zu verbessern. Die Hauptziele des Vorhabens sind die drastische Reduzierung der Standzeit der Flugzeuge am Vorfeld, die Senkung der Betriebskosten sowie die Minimierung der CO2-Emissionen und des L?rmpegels. Dies soll durch die Automatisierung von Abl?ufen auf dem Flughafen-Vorfeld erreicht werden. Ein zentraler Ansatzpunkt ist die Automatisierung des elektrischen Rollens der Flugzeuge, wodurch effizientere und schnellere Abfertigungsprozesse erm?glicht werden.
Ein weiteres bedeutendes Ziel von FastGate ist die Implementierung innovativer Technologien wie automatisierter Fluggastbrücken und grüner Antriebssysteme am Fahrwerk von Verkehrsflugzeugen. Diese Ma?nahmen er?ffnen neue M?glichkeiten für Prozessoptimierung und effizientere Abl?ufe auf Verkehrsflugh?fen. Das Projekt deckt dabei die gesamte Wertsch?pfungskette von der initialen Entwicklung bis zur Validierung der implementierten L?sungen ab.
Projektleitung: Prof. Roman Dumitrescu der Universit?t Paderborn
Projektpartner: AEROSOFT, Fraunhofer IEM, Airport Paderborn Lippstadt
Laufzeit: 2024 bis 2027
F?rdervolumen gesamt: 241.775 Euro
F?rdervolumen der Universit?t: 241.775 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft (DFG)
Ziel des beantragten Forschungsvorhabens ist die Entwicklung, numerische Umsetzung und Analyse der konzeptuell neuartigen dezentralisierten Regelungsmethodik Funnel Formation Control (FFC) für Multiagentensysteme. Dieses Verfahren ist in der Lage das Verbleiben der Abst?nde zweier Agenten innerhalb eines vorgegebenen Bereichs zu garantieren. Zus?tzlich wird eine Kollisionsvermeidung und Synchronisierung der Geschwindigkeiten mit vorgegebenen Fehlerschranken im Kontext des sogenannten ?Flocking“ erreicht. Als spezielle Herausforderung sollen heterogene Agenten mit nichtlinearer Dynamik betrachtet werden. Dabei wird explizit nicht angenommen, dass die Dynamiken und Anfangszust?nde der einzelnen Agenten bekannt sind, abgesehen von strukturellen Informationen wie der Ordnung der zugrundeliegenden Differentialgleichung. Um diese ambitionierten Ziele zu erreichen werden Methoden aus der Funnel-Regelung eingesetzt, welches ein aktuelles Forschungsgebiet der Regelungstechnik und mathematischen Systemtheorie ist und den Spagat zwischen Theorie und Anwendung leistet. Der Funnel-Regler garantiert die zeitliche Evolution der Ausgangsgr??en innerhalb eines vorgegebenen Bereichs. Dies erlaubt einen Reglerentwurf, welcher unabh?ngig von den konkreten Systemparametern ist und daher inh?rente Robustheitseigenschaften aufweist. Das gewünschte Regelungsverfahren besteht aus drei Komponenten: 1.) Im ersten Formationsregelungsanteil wird die gewünschte Position jedes Agenten in der Formation geometrisch konstruiert und als Referenzsignal in einem aktuellen Verfahren der Funnel-Regelung genutzt. Der auf diese Weise konstruierte FFC bewerkstelligt, dass jeder Agent seine gewünschte Position unter Einhaltung vorgegebener Restriktionen erreicht. Weiterhin wird ein Eingangsfilter genutzt, um die Messung von Geschwindigkeiten zu vermeiden. 2.) In einem zweiten Schritt wird der FFC um eine zus?tzliche Reglerkomponente erweitert, welche Kollisionsvermeidung erreicht. Diese Komponente basiert wiederum auf Techniken der Funnel-Regelung. Für diese Kombination soll die Machbarkeit und Robustheit rigoros nachgewiesen werden. 3.) Im letzten Schritt wird der kollisionsvermeidende FFC mit einem sogenannten kantenweisen Funnel-Kopplungsgesetz kombiniert, welches eine Synchronisierung der Geschwindigkeiten der Agenten mit vorgegebenen Fehlerschranken erreicht. Es wird erwartet, dass auf diese Weise das letztendliche Ziel des ?Flocking“ mit vorgegebenem Verhalten der Agenten erreicht werden kann. Eine Machbarkeitsstudie soll anhand des Formationsflugs von Satelliten erfolgen, wobei jeder Satellit durch eine nichtlineare Differentialgleichung zweiter Ordnung beschrieben ist. Die Leistungsf?higkeit und Implementierbarkeit der entwickelten Regelungsmethoden sollen dabei fortw?hrend durch simulative Untersuchungen validiert werden. Dies unterstützt die Auswahl geeigneter Reglerparameter und stellt so eine regelm??ige Rückkopplung zwischen Theorie und numerischer Praxis sicher.
Projektleitung: Jun. Prof. Thomas Berger der Universit?t Paderborn
Laufzeit: 01.06.2023 - 31.05.2026
F?rdervolumen gesamt: 4,98 Mio. Euro
F?rdervolumen der Universit?t: 379.344,40 Euro
Gef?rdert durch: Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen, Projekttr?ger Jülich, it‘s OWL
Ausgangssituation
In der heutigen Zeit mangelt es Entwicklerinnen und Entwickler oft an geeigneten Methoden, um nachhaltige Systeme zu entwerfen und zu gestalten. Die Entscheidungsfindung im Entwicklungsprozess von Produkten, insbesondere in Bezug auf nachhaltige Optionen, ist h?ufig von Unsicherheit gepr?gt. Die Frage, ob beispielsweise ein Elektromotor vergossen werden sollte, um W?rmeverluste zu minimieren, oder ob auf das Vergie?en verzichtet werden sollte, um das Recycling zu erleichtern, wirft wichtige ?kologische und ?konomische Fragen auf. Zus?tzlich bleibt unklar, welche L?sung den gr??ten CO2-Einspareffekt hat. Vor diesem Hintergrund entstand das Projekt "Sustainable Lifecycle Engineering" (SLE), das darauf abzielt, Entwicklern und Produktmanagern mit den notwendigen Werkzeugen auszustatten, um Nachhaltigkeitsaspekte bereits in der frühen Phase des Engineering-Prozesses zu berücksichtigen.
Zielsetzung:
Das Hauptziel des Projekts "Sustainable Lifecycle Engineering" (SLE) besteht darin, Entwickler und Produktmanager in die Lage zu versetzen, Nachhaltigkeitsaspekte systematisch in ihre Entscheidungsfindung einzubeziehen, w?hrend sie komplexe Systeme entwerfen. Dies soll durch die Entwicklung und Implementierung von Methoden und Ans?tzen erreicht werden, die auf dem Modellbasierten Systems Engineering (MBSE) aufbauen. Bestehende MBSE-Methoden werden um die Dimension der Nachhaltigkeit erweitert, wodurch die Berücksichtigung ?kologischer, sozialer und ?konomischer Gesichtspunkte in den Entwicklungsprozess integriert wird. Die Partnerschaft des Projekts verspricht eine interdisziplin?re Zusammenarbeit, um die Lücke zwischen technologischer Innovation und Nachhaltigkeitsanforderungen zu schlie?en. Letztendlich strebt das Projekt SLE danach, die Gestaltung von Produkten und Systemen zu revolutionieren, indem es den Fokus auf Nachhaltigkeit von Anfang an legt und somit zu einer umweltfreundlicheren und zukunftsorientierten Entwicklung beitr?gt.
Projektleitung: Prof. Roman Dumitrescu der Universit?t Paderborn
Projektpartner: Fraunhofer IEM, Diebold Nixdorf, HARTING, Miele, 360直播吧mens, Wago, Wuppertal Institut
Laufzeit: 03.2024 - 03.2027
Projektvolumen gesamt (Universit?t): 350.000 Euro
Gef?rdert durch: Deutsche Forschungsgemeinschaft
2014 haben wir das Amoebot Modell für die rigorose algorithmische Forschung im Bereich der programmierbaren Materie vorgeschlagen. Seitdem hat dieses Modell zunehmend an Einfluss gewonnen, aber sein gro?er Nachteil wie bei vielen anderen Modellen ist, dass es nur langsame Formver?nderungen erlaubt.
Vor kurzem haben wir daher eine Schaltkreiserweiterung für das Amoebot Modell vorgestellt, welche es erlaubt, verschiedene fundamentale Probleme wie Leader Election oder Kompassanpassung deutlich schneller zu l?sen als im ursprünglichen Modell. Basierend auf dieser Erweiterung wollen wir hochgradig skalierbare verteilte Algorithmen für Formtransformationen, das Finden von Fehlern in Formen und für das bestm?gliche Matching einer gegebenen Form mit einer Zielform finden. Solche hochgradig skalierbaren Algorithmen sind essenziell, um unsere Forschungsergebnisse genügend attraktiv für eine technische Umsetzung zu machen.
Projektleitung: Prof. Dr. Christian Scheideler, Universit?t Paderborn