Projekte von Prof. Dr. Tobias Weich
TRR 358 - Spektraltheorie in h?herem Rang und unendlichem Volumen (Teilprojekt B02)
Spektraltheorie ist ein fundamentales Werkzeug zur Untersuchung lokal-symmetrischer R?ume, die im klassischen Kontext in der Regel endliches Volumen haben. Bereits bei R?umen vom Rang eins, etwa für Quotienten der oberen Halbebene modulo diskreter Gruppen unendlichen Co-Volumens treten sehr interessante und charakteristische Ph?nomene in der ...
Laufzeit: 01/2023 - 12/2026
Gef?rdert durch: DFG
TRR 358 - Geod?tische Flüsse und Weyl Kammer Flüsse auf affinen Geb?uden (Teilprojekt B04)
Affine Geb?ude und ihre Quotienten sind geometrische Objekte, die zu sehr interessanten dynamischen Systemen führen. In diesem Projekt sollen geod?tische Flüsse und Weyl Kammer Flüsse auf affinen Geb?uden studiert werden. Das Projekt zielt dabei darauf ab, eine Spektraltheorie gemeinsamer Ruelle-Taylor Resonanzen zu entwickeln und ...
Laufzeit: 01/2023 - 12/2026
Gef?rdert durch: DFG
TRR 358 - Ganzzahlige Strukturen in Geometrie und Darstellungstheorie
Ganzzahlige Strukturen treten an verschiedenen Stellen verteilt über die gesamte Mathematik auf. Wir begegnen ihnen als Gitter im Euklidischen Raum, als ganze Modelle von reduktiven Gruppen oder von Schemata der algebraischen Geometrie oder als ganzzahlige Darstellungen von Gruppen und Algebren. Selbst Fragen über die grundlegendste ganzzahlige ...
Laufzeit: 01/2022 - 12/2026
Gef?rdert durch: DFG
PhoQC: Photonisches Quantencomputing
Photonisches Quantencomputing (PhoQC): Es geht um die Erforschung der Grundlagen für die Realisierung von photonischen Quantenrechnern. Dazu soll an der Universit?t Paderborn perspektivisch ein international führendes Forschungszentrum geschaffen werden, in das die Bereiche Physik, Mathematik, Ingenieurswissenschaften, Informatik und Elektrotechnik ...
Laufzeit: 11/2021 - 12/2024
Gef?rdert durch: MKW NRW, EIN Quantum NRW
Mikrolokale Methoden für hyperbolische Dynamiken
Ein fundamentales Paradigma der statistischen Physik lautet, dass hinreichend komplexe dynamische Systeme sehr schnell in einen Gleichgewichtszustand konvergieren. Um diese Konvergenz ins Gleichgewicht mathematisch rigoros zu beweisen, ordneten Pollicott und Ruelle in den 1980er Jahren einer bestimmten Klasse dynamischer Systeme, den sogenannten ...
Laufzeit: 08/2019 - 07/2025
Gef?rdert durch: DFG
Spektrale Korrespondenzen für negativ gekrümmte Riemannsche lokal-symmetrische R?ume
Das zentrale Ziel des Vorhabens ist die Beschreibung der Pollicott-Ruelle-Resonanzen lokal-symmetrischer R?ume negativer Krümmung mithilfe einer zu etablierenden Korrespondenz zwischen diesen Resonanzen und Quantenresonanzen. Es gibt enge Zusammenh?nge zwischen den dynamischen Eigenschaften eines freien Teilchens auf negativ gekrümmten kompakten ...
Laufzeit: 01/2019 - 12/2023
Gef?rdert durch: DFG